

Detección y clasificación de fallas eléctricas en un sistema eléctrico de potencia usando la transformada Wavelet y redes neuronales

Detection and classification of electrical faults in an electrical power system using the Wavelet transform and neural networks

Detecção e classificação de falhas elétricas em um sistema elétrico de potência utilizando a transformada wavelet e redes neurais

Ismael Elías Erazo-Velasco

ismael.erazo@utelvt.edu.ec https://orcid.org/0000-0002-7647-4611 Docente Investigador de la Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas, Ecuador.

José Vicencio Bautista-Sánchez

jose.bautista@utelvt.edu.ec https://orcid.org/0000-0003-3358-1908 Docente Investigador de la Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas, Ecuador.

Roberto Iván Rodríguez-Jijón

roberto.rodriguez@utelvt.edu.ec https://orcid.org/0000-0003-1055-7921 Docente Investigador de la Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas, Ecuador.

Luis Adrián González-Quiñonez

luis.gonzalez@utelvt.edu.ec https://orcid.org/0000-0001-5026-0028 Docente Investigador de la Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas, Ecuador.

Byron Fernando Chere-Quiñónez

byron.chere@utelvt.edu.ec https://orcid.org/0000-0003-1886-6147 Docente Investigador de la Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas, Ecuador.

RESUMEN

El objetivo principal de esta investigación fue la detección y clasificación de fallas eléctricas en un sistema eléctrico de potencia usando la transformada Wavelet y Redes Neuronales. La metodología consiste en dos pasos; en el primer paso se realiza el proceso de cálculo y diseño de un sistema de potencia radial. La segunda fase arroja la modelación y simulación de detección y clasificación de fallas en Matlab/ Simulink. Los resultados obtenidos indican que la red neuronal predice y clasifica los tipos de fallas en sistema eléctrico de potencia. Se concluye que a pesar de que el modelo neuronal con regularización bayesiana y finalización temprana ofrece errores relativamente bajos, presenta el inconveniente de ser una caja negra rígida, es decir, la red neuronal simplemente evalúa sus entradas y produce sus salidas, pero no se sabe cómo. Por esta razón, cuando ocurre una clasificación errónea, no hay forma de realizar cambios y la red debe volver a entrenarse por completo, lo que no es apropiado desde un punto de vista práctico.

Palabra claves: Transformada de Wavelet, Técnicas de detección y detección de falla, redes neuronales inteligentes.

ABSTRACT

The main objective of this research was the detection and classification of electrical faults in an electrical power system using the Wavelet transform and Neural Networks. The methodology consists of two steps; In the first step, the calculation and design process of a radial power system is carried out. The second phase throws the modeling and simulation of fault detection and classification in Matlab/ Simulink. The results obtained indicate that the neural network predicts and classifies the types of faults in the electrical power system. It is concluded that although the neural model with Bayesian regularization and early completion offers relatively low errors, it has the drawback of being a rigid black box, that is, the neural network simply evaluates its inputs and produces its outputs, but it is not known What. For this reason, when a misclassification occurs, there is no way to make changes and the network must be completely retrained, which is not appropriate from a practical point of view.

Keywords: Wavelet transform, fault detection and detection techniques, intelligent neural networks.

RESUMO

O objetivo principal desta pesquisa foi a detecção e classificação de falhas elétricas em um sistema elétrico de potência utilizando a transformada Wavelet e Redes Neurais. A metodologia consiste em duas etapas; Na primeira etapa, é realizado o processo de cálculo e projeto de um sistema de potência radial. A segunda fase lança a modelagem e simulação de detecção e classificação de falhas em Matlab/ Simulink. Os resultados obtidos indicam que a rede neural prevê e classifica os tipos de falhas no sistema elétrico de potência. Conclui-se que embora o modelo neural com regularização Bayesiana e preenchimento antecipado ofereça erros relativamente baixos, ele tem a desvantagem de ser uma caixa preta rígida, ou seja, a rede neural simplesmente avalia suas entradas e produz suas saídas, mas não se sabe O que. Por esse motivo, quando ocorre uma classificação incorreta, não há como fazer alterações e a rede deve ser totalmente retreinada, o que não é adequado do ponto de vista prático.

Palavras-chave: Transformada Wavelet, técnicas de detecção e detecção de falhas, redes neurais inteligentes.

Sapienza: International Journal of Interdisciplinary Studies | Vol. 3 | n. 7 | Out - Dez | 2022 | e-ISSN: 2675-9780

229

Introducción

El propósito principal del sistema de suministro eléctrico es mantener un alto nivel de continuidad y calidad de servicio, de esta forma, para su buen funcionamiento está conformado por una serie de elementos interconectados como generadores, líneas, transformadores y centros de carga. A juicio de (Palma Behnke, 2008), los sistemas eléctricos de potencia o redes eléctricas, tienen como objetivo proveer a los consumidores la energía eléctrica en la cantidad, tiempo y lugar requerido y con una calidad y confiabilidad adecuadas, al menor costo posible, preservando los recursos primarios y el medio ambiente.

Hoy, la existencia de numerosos factores como aumento constante en los requerimientos de disponibilidad de la red eléctrica; ampliación del tamaño y la complejidad de las redes eléctricas; introducción de energías renovables, gestión de la demanda, entre otros (Padrón, 2015); se convierte en un problema, si el sistema eléctrico es insuficiente para asumir adecuadamente las demandas de los usuarios, en consecuencia, sobrevienen las fallas constantes.

En respuesta a esta dificultad, se deben acometer lo antes posible las acciones pertinentes para eliminar la falla y en consecuencia salvaguardar la red y evitar que quede inoperativa. Según (Mujal, 2014), la función básica de las medidas de protección en un sistema eléctrico es proteger el equipo y el sistema mismo de condiciones de funcionamiento anormales y fallas eléctricas que pueden provocar fallas en el equipo y en el sistema en general. En el desempeño de sus funciones cuando ocurre una falla, algunos componentes conectados al sistema de potencia actúan sobre los correspondientes elementos para despejar la deficiencia, y restablecer la operatividad del sistema de forma segura y completa.

Lo señalado conduce a decir que, las fallas producidas en los sistemas eléctricos de potencia, ocasionan la interrupción no deseada en el servicio de energía, lo que se transforma en pérdidas monetarias por tiempo de indisponibilidad y multas por incumplimiento a las reglamentaciones vigentes, por lo que se hace necesario conocer de manera rápida confiable, el tipo de falla y a localización de la misma, de manera que se pueda resolver el problema y mantener la continuidad del servicio.

En el orden de las ideas anteriores, el objetivo de esta investigación consideró la detección y clasificación de fallas eléctricas en un sistema eléctrico de potencia usando la transformada Wavelet y Redes Neuronales.

Desarrollo

Transformada de Wavelet

De manera muy general, la Transformada Wavelet de una función f(t) es la descomposición de f(t) en un conjunto de funciones $\Psi_s(t)$ que forman una base y son llamadas las "Wavelets" (Morán, 2001).

La Transformada Wavelet se define como:

$$\Psi_{\mathbf{f}}(\mathbf{s},\mathbf{t}) = \int_{-\infty}^{\infty} \boldsymbol{f}(\boldsymbol{t}) * \Psi_{\mathbf{s}}(\mathbf{t}) \, \mathrm{d}\mathbf{t} \qquad (1)$$

Las Wavelets son generadas a partir de la traslación y cambio de escala de una misma función wavelet $\Psi_s(t)$ llamada la "Wavelet madre", y se define como

$$\Psi_{s}(\mathbf{t}) = \frac{1}{\sqrt{s}} \Psi\left(\frac{t-\tau}{s}\right) \qquad (2)$$

230

Donde s es el factor de escala, y τ es el factor de traslación, las wavelets Ψ_s (t) generadas de la misma función wavelet madre $\psi(t)$ tienen diferente escala s y ubicación τ , pero tienen toda la misma forma. Se utilizan siempre factores de escala s > 0 (Gallego & Castro, 2011).

Figura 1. Tipos de funciones de ondícula.

Técnicas de Detección, Clasificación y Localización de Fallas

Existen una serie de técnicas y algoritmos para la localización de fallas, entre las cuales podemos mencionar: Técnicas basadas en la teoría de circuitos, técnicas basadas en la detección de fallas mediante la medición de voltaje, corriente y cambio de impedancia, técnicas basadas en inteligencia artificial, técnicas basadas en teorías de ondas viajeras (Rodríguez, 2011).

Técnicas Localización de Fallas Basadas en Teorías de Circuitos

Estas técnicas detectan las fallas a través de la medición del voltaje de barra, la corriente de línea y el cambio de la impedancia Entre estos métodos existen varios algoritmos de detección de defectos, tales como: resistencia simple, método Takagi, Schweitzer y Erickson (Liquinchana, 2022).

Figura 2. Representación del diagrama unifilar de una línea.

Figura 3. Representación del circuito equivalente.

$$V_{\rm G} = m \ Z_{\rm L} \ I_{\rm G} + R_{\rm f} \ I_{\rm f}$$

Dónde

- m Es la distancia de la línea desde la subestación al punto de falla
- Z_L Impedancia de secuencia positiva de la línea
- IG Corriente de la fase fallada aportada por la subestación G
- Rf Es la resistencia de falla
- $I_{\rm f}\,$ $\,Es$ la corriente de falla

Técnicas Basadas en Teorías de Ondas Viajeras

Cuando ocurre una falla en una red de alta tensión, se generan ondas que se propagan a lo largo de toda la línea de falla. Para corregir esta eventualidad, se instalan varios dispositivos de registro de ondas viajeras en ubicaciones individuales de la subestación de registro frente de onda, hora de llegada, etc. se envían al centro de cálculo de errores, que calcula la distancia de error (Morillo, 2014).

Técnicas Basadas en Redes Neuronales Artificiales

Estos métodos se utilizan para detectar cualquier tipo de falla distinguir fase del daño, determinar la dirección del daño y evaluar la ubicación del fallo, constan de varios módulos dependiendo para que se le utilice. Estas redes neuronales son entrenadas usando diferentes patrones para diferentes tipos de fallas, diferentes ubicaciones, diferente topología de la red y diferentes parámetros eléctricos.

Tienen como entradas las señales de tensión y de corrientes de fase muestreada a una determinada frecuencia de muestreo fs, el proceso implementación de este tipo de técnica depende de los siguientes factores (León, 2015).

- Preparación adecuada de los datos de entrenamientos.
- Selección adecuada de la estructura red neuronal artificial.
- Selección adecuada del algoritmo de entrenamiento.

CC BY-NC-ND

https://doi.org/10.51798/sijis.v3i7.537

- Entrenamiento de la red neuronal artificial.
- Evaluación de la red neuronal artificial entrenada, usando patrones de prueba y validación.

Metodología

La metodología consiste en dos pasos; en el primer paso se realiza el proceso de cálculo y diseño de un sistema de potencia radial. La segunda fase arroja la modelación y simulación de detección y clasificación de fallas en Matlab/ Simulink.

Para realizar esto, la tarea de protección de distancia se subdivide en diferentes redes neuronales para la detección de fallas, la identificación de fallas (clasificación) y la ubicación de fallas en diferentes zonas. Se discutieron tres fallas comunes; fallas monofásicas a tierra, fallas bifásicas y fallas bifásicas a tierra.

Cálculos y Resultados

Cálculo y Diseño de un Sistema de Potencia Radial

Dado un sistema eléctrico de potencial radial hay línea de transmisión corta la cual tiene se diseñó un conductor Rook la cual tiene una distancia 83 millas y alimenta una carga 35 Mw con un factor de potencia 0.92, y donde las distancia son Dab = 10 ft, $D_{bc} = 8$ ft y la distancia es $D_{ac} = 9$ ft y el voltaje de transmisión de 69 kv (Hernández, Nieto, & Carrum, 2014).

 $DMG = \sqrt[3]{Dab \ Dac \ Dbc} = \sqrt[3]{10 \ x \ 8x \ 9} = 8,96 \ ft$

Figura 4. Configuración geométrica de las líneas.

					Resistencia				Reactancia por conductor		
						Ac. 6	ю Hz		1 pie de sepa	ración, 60 Hz	
	1										
	Area de	Trensado	Canas da	Diámatra	Da 20°C	2000	so°c	CMR	Inductiva	Capacitiva	
Tino	anumino,	A1/St	aluminio	exterior pul	Q(1 000 pie	Q(mi	Q/mi	D. ft	$X_{\rm c} \Omega/{\rm mi}$	X' MΩ·mi	
1.00		Airst	arumnio	exterior, put	34/1,000 pie	a by the		23, 11	, u ,	<i>a</i> ,	
Waxwing	266,800	18/1	2	0.609	0.0646	0.3488	0.3831	0.0198	0.476	0.1090	
Partridge	266,800	26/7	2	0.642	0.0640	0.3452	0.3792	0.0217	0.465	0.1074	
Ostrich	300,000	26/7	2	0.680	0.0569	0.3070	0.3372	0.0229	0.458	0.1057	
Merlin	336,400	18/1	2	0.684	0.0512 ·	0.2767	0.3037	0.0222	0.462	0.1055	
Linnet	336,400	26/7	2	0.721	0.0507	0.2737	0.3006	0.0243	0.451	0.1040	
Oriole	336,400	30/7	2	0.741	0.0504	0.2719	0.2987	0.0255	0.445	0.1032	
Chickadee	397,500	18/1	2	0.743	0.0433	0.2342	0.2572	0.0241	0.452	0.1031	
Ibis	397,500	26/7	2	0.783	0.0430	0.2323	0.2551	0.0264	0.441	0.1015	
Pelican	477,000	18/1	2	0.814	0.0361	0.1957	0.2148	0.0264	0.441	0.1004	
Flicker	477,000	24/7	2	0.846	0.0359	0.1943	0.2134	0.0284	0.432	0.0992	
Hawk	477,000	26/7	2	0.858	0.0357	0.1931	0.2120	0.0289	0.430	0.0988	
Hen	477,000	30/7	2	0.883	0.0355	0.1919	0.2107	0.0304	0.424	0.0980	
Osprey	556,500	18/1	2	0.879	0.0309	0.1679	0.1843	0.0284	0.432	0.0981	
Parakeet	556,500	24/7	2	0.914	0.0308	0.1669	0_1832	0.0306	0.423	0.0969	
Dove	556,500	26/7	2	0.927	0.0307	0.1663	0.1826	0.0314	0.420	0.0965	
Rook	636,000	24/7	2	0.977	0.0269	0.1461	0.1603	0.0327	0.415	0.0950	
Grosbeak	636,000	26/7	2	0.990	0.0268	0.1454	0.1596	0.0335	0.412	0.0946	
Drake	795,000	26/7	2	1.108	0.0215	0.1172	0.1284	0.0373	0.399	0.0912	
Tern	795,000	45/7	3	1.063	0.0217	0.1188	0.1302	0.0352	0.406	0.0925	
Rail	954,000	45/7	3	1.165	0.0181	0.0997	0.1092	0.0386	0.395	0.0897	
Cardinal	954,000	54/7	3	1.196	0.0180	0.0988	0.1082	0.0402	0.390	0.0890	
Ortolan	1,033,500	45/7	3	1.213	0.0167	0.0924	0.1011	0.0402	0.390	0.0885	
Bluejsy	1,113,000	45/7	3	1.259	0.0155	0.0861	0.0941	0.0415	0.386	0.0874	
Finch	1,113,000	54/19	3	1.293	0.0155	0.0856	0.0937	0.0436	0.380	0.0866	
Bittern	1,272,000	45/7	3	1.345	0.0136	0.0762	0.0832	0.0444	0.378	0.0855	
Pheasant	1,272,000	54/19	3	1.382	0.0135	0.0751	0.0821	0.0466	0.372	0.0847	
Bobolink	1,431,000	45/7	3	1.427	0.0121	0.0684	0.0746	0.0470	0.371	0.0837	
Plover	1,431,000	54/19	3	1.465	0.0120	0.0673	0.0735	0.0494	0.365	0.0829	
Lapwing	1,590,000	45/7	3	1.502	0.0109	0.0623	0.0678	0.0498	0.364	0.0822	
Falcon	1,590,000	54/19	3	1.545	0.0108	0.0612	0.0667	0.0523	0.358	0.0814	
Plushind	0 150 000	01/10		1 500	0.0000			0.0700	0.044	0.0776	

Tabla 1. Características de conductores.

Datos

RMG = 0,032 ft

$$R=0.1172 \ \frac{\Omega}{millas} \ 83 \ millas = 9, \ 72 \ \Omega$$

P = 35 Mw

 $\cos \theta = 0.92$

V= 69 kv

Figura 5. Esquema de unifilar.

$$L=0.7141 \log \left(\frac{DMG}{RMG}\right) \frac{mH}{millas} \text{ x millas totales} = 0.7141 \log \left(\frac{8.96}{0.032}\right) \frac{mH}{millas} 83 \text{ millas} = 0.144 \text{ H}$$
$$X_{L} = 2\pi \text{f } L = 2\pi (60) (0.144) = 54.14 \Omega$$
$$Z=R+\text{j } X_{L} = 9,72 \Omega + \text{j } 54.14 \Omega$$
$$|Z| = 55.28 \text{ y } \theta = 79.84$$

 $P = \sqrt{3} V I Cos \theta$

I =
$$\frac{P}{\sqrt{3} V \cos\theta} = \frac{35 Mw}{\sqrt{3} 69 kv 0.92} = 0.318 \text{ ka}$$

$$\varphi = Cos^{-1}(0,92) = 23,07$$

Circuito Equivalente de Sistema de Potencia

$$Vs = Z I + Vr$$

$$Vr = Vs - ZI = 69 [0 - (55,28[78,84) (0,318[-23,07) = 61,13[-14,88])]$$

• %
$$\Delta V = \frac{|Vs| - |Vr|}{|Vs|} \times 100 = \frac{69 - 61.13}{69} \times 100 = 11,40 \%$$

Modelación y Simulación de Detección y Clasificación de Fallas Matlab/ Simulink

Para la detección y clasificación de fallas en sistema eléctrico de potencia usando las redes neuronales vamos utilizar la siguiente tabla.

Tipos fallas	Α	В	С	Tierra
Sin Fallas	0	0	0	0
Monofásica A	1	0	0	1
Monofásica B	0	1	0	1
Monofásica C	0	0	1	1
Bifásica aislada AB	1	1	0	0
Bifásica aislada AC	1	0	1	0
Bifásica aislada BC	0	1	1	0
Bifásica AB a tierra	1	1	0	1
Bifásica AC a tierra	1	0	1	1
Bifásica BC a tierra	0	1	1	1
Trifasica ABC	1	1	1	0

Con los valores de esta tabla sacaremos los datos de salidas de nuestra red neuronal y para los datos de entradas va ser los valores de la corriente de cortocircuito los cuales obtendremos de la simulación del siguiente esquema en Matlab/ Simulink.

235

Código en Matlab

%% CODIGO AUTOR MGT ISMAEL ERAZO INVESTIGADOR INDEPENDIENTE %%

```
%% Detecion de fallas por medio la transformda de Wavevlte
clc;
clear all;
open('fallos.slx');
sim('fallos.slx');
IA = current1;
IB = current2;
IC = current3;
IG = current4;
[cA, LA] = wavedec(IA, 1, 'db4');
[cB, LB] = wavedec(IB, 1, 'db4');
[cC, LC] = wavedec(IC, 1, 'db4');
[cG, LG] = wavedec(IG, 1, 'db4');
coefA = detcoef(cA, LA, 1);
coefB = detcoef(cB, LB, 1);
coefC = detcoef(cC, LC, 1);
coefG = detcoef(cG, LG, 1);
Fase A = max(coefA)
Fase B = max(coefB)
Fase C = max(coefC)
Tierra = max(coefG)
if Fase A > 200
    if Fase B > 200
        if Fase_C > 200
             if Tierra > 200
disp("Se detecta falla trifásica a tierra")
        end
    end
    end
end
if Fase A > 200
    if Fase B > 200
        if Fase A > 200
             if Tierra < 200
disp("")
        end
    end
    end
end
if Fase_A > 200
    if Fase B > 200
        if Fase_C < 200
             if Tierra > 200
disp("Se detecta falla de línea doble a tierra (AB-G)")
        end
    end
    end
end
if Fase A > 200
    if Fase_B < 200
        if Fase C > 200
             if Tierra > 200
disp("Se detecta falla de línea doble a tierra (AC-G)")
        end
    end
    end
end
if Fase A < 200
    if Fase B > 200
        if Fase_C > 200
             if Tierra > 200
disp("Se detecta falla de línea doble a tierra (BC-G)")
        end
    end
    end
end
if Fase A > 200
    if Fase_B > 200
```

Sapienza: International Journal of Interdisciplinary Studies | Vol. 3 | n. 7 | Out - Dez | 2022 | e-ISSN: 2675-9780

236

```
if Fase C < 200
            if Tierra < 200
disp("Se detecta falla de línea a línea entre la fase A y B")
        end
    end
    end
end
if Fase A > 200
    if Fase B < 200
        if Fase C > 200
            if Tierra < 200</pre>
disp("Se detecta falla de línea a línea entre la fase A y C")
        end
    end
    end
end
if Fase A < 200
    if Fase_B > 200
        if Fase C > 200
            if Tierra < 200
disp("Se detecta falla de línea a línea entre la fase B y C")
        end
    end
    end
end
if Fase A > 200
    if Fase_B < 200</pre>
        if Fase A < 200
            if Tierra > 200
disp("Se detecta una sola falla de línea a tierra en la fase A")
        end
    end
    end
end
if Fase A < 200
    if Fase B > 200
        if Fase C < 200
            if Tierra > 200
disp("Se detecta una sola falla de línea a tierra en la fase B")
        end
    end
    end
end
if Fase_A < 200
    if Fase B < 200
        if Fase_C > 200
            if Tierra > 200
disp("Se detecta una sola falla de línea a tierra en la fase C")
        end
    end
    end
end
if Fase_A < 200
    if Fase B < 200
        if Fase_C < 200
            if Tierra < 200
disp("No se detecta ningún fallo. El sistema esta funcionando normal")
        end
    end
    end
end
```


Esquema Básico en Simulink


```
238
```

a block Parameters: Inree-Phase Pault	>
Three-Phase Fault (mask) (link)	
Implements a fault (short-circuit) between any phase and t ground. When the external switching time mode is selected Simulink logical signal is used to control the fault operation	the i, a i.
Parameters	
Initial status: 0	1
Fault between:	
	and the second second
Phase A Phase B Phase C Gro	una
Phase A Phase B Phase C Gro Switching times (s): [0.05 0.1]) External
Phase A Phase B Phase C Gro Switching times (s): [0.05 0.1] Fault resistance Ron (Ohm): 0.001	External
Phase A Phase B Phase C Gro Switching times (s): [0.05 0.1] Fault resistance Ron (Ohm): 0.001 Ground resistance Rg (Ohm): 0.01	External
Phase A Phase B Phase C Gro Switching times (s): [0.05 0.1] Fault resistance Ron (Ohm): 0.001 Ground resistance Rg (Ohm): 0.01 Snubber resistance Rs (Ohm): 1e6	External
Phase A Phase B Phase C Gro Switching times (s): [0.05 0.1] Fault resistance Ron (Ohm): 0.001 Ground resistance Rg (Ohm): 0.01 Snubber resistance Rs (Ohm): 1e6 Snubber capacitance Cs (F): Inf	External

Command Window

```
Fase_A =
    2.0476e+06

Fase_B =
    5.8877e+06

Fase_C =
    8.2552

Tierra =
    2.7399e+05

Se detecta falla de línea doble a tierra (AB-G)
fa >>>
```


×10 ⁷		FALLAS DE C	CORTOCICUITO		
	$\land \land$	\wedge	\wedge (\wedge	
	VV	V	V	V	

Figura 7. Falla bifásica AB a tierra.

Block Parameters: Three-Phase Fault	\times
Three-Phase Fault (mask) (link)	
Implements a fault (short-circuit) between any phase and the ground. When the external switching time mode is selected, a Simulink logical signal is used to control the fault operation.	
Parameters	
Initial status: 0	
Fault between:	
✓ Phase A ✓ Phase B ✓ Phase C □ Ground	
Switching times (s): [0.05 0.1]	mal
Fault resistance Ron (Ohm): 0.001	
Ground resistance Rg (Ohm): 0.01	
Snubber resistance Rs (Ohm): 1e6	
Snubber resistance Rs (Ohm): 1e6 Snubber capacitance Cs (F): inf	
Snubber resistance Rs (Ohm): 1e6 Snubber capacitance Cs (F): inf Measurements None	
Snubber resistance Rs (Ohm): 1e6 Snubber capacitance Cs (F): inf Measurements None	

Recebido: 14/09/2022 **Aceito:** 26/10/2022 **Disponível:** 30/10/2022

https://doi.org/10.51798/sijis.v3i7.537

240

Command Window	
Fase_A =	
3.3123e+06	
Fase_B =	
1.1240e+07	
Fase_C =	
4.8495e+06	
Tierra =	
0.0018	
у́т >>	
	UTF-8

Figura 8. Falla trifásica ABC.

Así podemos ir sacando todos los valores de las corrientes de cortocircuito de cada uno de los diferentes tipos de fallas que existen llegando a completar la siguiente tabla.

Datos para creación de la red neuronal

Tipo de falla	INPUT 1 fase A	INPUT 2 fase B	INPUT 3 fase C	INPUT 4 Tierra	OUTPUT 1	OUTPUT 2	OUTPUT 3	OUTPUT 4
Falla trifásica - Tierra	3,31E+10	1,12E+11	4,10E+10	1,06E+09	1	1	1	1
Falla trifásica	3,31E+10	1,12E+11	4,85E+10	0.0018	1	1	1	0
Falla de doble línea a tierra (AB-G)	2,05E+10	5,89E+10	82.552	2,74E+09	1	1	0	1
Falla de doble línea a tierra (AC-G)	5,95E+10	86.532	3,05E+10	5,35E+09	1	0	1	1
Falla de doble línea a tierra (BC-G)	96.229	1,12E+11	2,36E+10	2,16E+09	0	1	1	1
Falla de línea a línea (A-B)	3,01E+09	125.960	82.552	2,49E+09	1	1	0	0
Falla de línea a línea (A-C)	6,08E+10	102.813	1,75E+10	0.0057	1	0	1	0
Falla de línea a línea (B-C)	86.497	1,12E+11	1,49E+10	0.0020	0	1	1	0
Falla de una sola línea a tierra(A- G)	3,01E+09	125.960	82.552	2,49E+09	1	0	0	1
Falla (B-G)	78.048	1,02E+10	82.552	2,99E+09	0	1	0	1
Falla línea a tierra (C-G)	78.048	71.611	3,53E+09	1,02E+10	0	0	1	1
Sistema sin fallos	78.048	75.399	100.264	0.0018	0	0	0	0

Tabla 2. Datos para la creación de la red neuronal inteligente.

Creación de Red Neuronal Con los Datos

```
%% RED NEURONAL
clc
I=Input';
T=Output';
Error=0.0;
spread=1;
red_neuronal=newrb(I,T,Error,spread);
Pruebas=Testingdata';
Resultados=sim(red_neuronal,Pruebas);
y=Resultados'
```

Recebido: 14/09/2022 **Aceito:** 26/10/2022 **Disponível:** 30/10/2022

https://doi.org/10.51798/sijis.v3i7.537

242

Name 📥	Value		
H IA	377x1 double		
🛨 IB	377x1 double		
🕂 IC	377x1 double		
🕂 IG	377x1 double		
🕂 Input	108x4 double		
H LA	[192;192;377]		
🛨 LB	[192;192;377]		
🕂 LC	[192;192;377]		
🕂 LG	[192;192;377]		
🕂 Output	108x4 double		
- Pruebas	4x30 double		
😺 red_neuronal	1x1 network		
🕂 Resultados	4x30 double		
🛨 spread	1		
T	4x108 double		
🛨 Testingdata	30x4 double		
- Tierra	1.1901e+06		
tout	377x1 double		
🛨 y	30x4 double		
-			1
📣 NEWRB		—	

Figura 9. Entrenamiento de la red neuronal

Resultados Obtenidos

Sapienza: International Journal of Interdisciplinary Studies | Vol. 3 | n. 7 | Out - Dez | 2022 | e-ISSN: 2675-9780

243

Observando los resultados de la Figura 10 podemos ver que la red neuronal predice y clasifica los tipos de fallas en sistema eléctrico de potencia la cual podemos corroborar y comparar con la Tabla 2.

```
Command Window
 NEWRB, neurons = 0, MSE = 0.243056
 NEWRB, neurons = 50, MSE = 0.0520506
 NEWRB, neurons = 100, MSE = 1.79537e-31
 Warning: Matrix is singular to working precision.
     1.0000
               1.0000
                        1.0000
                                   1.0000
      1.0000
               1.0000
                         1.0000
                                  -0.0000
                       -0.0000
      1.0000
               1.0000
                                   1.0000
             -0.0000
     1.0000
                        1.0000
                                   1.0000
     -0.0000
               1.0000
                        1.0000
                                   1.0000
     1.0000
               1.0000
                        0.0000
                                  0.0000
     1.0000
             -0.0000
                        1.0000
                                  -0.0000
                        1.0000
     -0.0000
              1.0000
                                  -0.0000
              -0.0000
                        -0.0000
     1.0000
                                   1.0000
     -0.0000
               1.0000
                        -0.0000
                                   1.0000
      0.0000
              -0.0000
                        1.0000
                                   1.0000
     -0.0000
              -0.0000
                        -0.0000
                                  -0.0000
     1.0000
               1.0000
                        1.0000
                                  1.0000
     1.0000
               1.0000
                        1.0000
                                        0
     1.0000
               1.0000
                             0
                                  1.0000
              -0.0000
                        1.0000
      1.0000
                                   1.0000
      0.0000
               1.0000
                         1.0000
                                   1.0000
      1.0000
               1.0000
                        -0.0000
                                   0.0000
      1.0000
              -0.0000
                         1.0000
                                  -0.0000
fx
```

Figura 10. Red neuronal predice y clasifica los tipos de fallas en sistema eléctrico de potencia.

Conclusiones

Los estudios presentados en este trabajo relacionados con la clasificación automática de fallas en líneas de transmisión se enfocan en los siguientes aspectos: modelo de simulación de fallas, técnica de filtrado de señales, técnica de pre-procesamiento de datos y finalmente clasificar este tipo de incidentes.

Por su parte, los resultados de la investigación muestran que la metodología propuesta para la exploración sistemática de las condiciones eléctricas por medio de un modelo ATP es amplia y robusta.

Los resultados de la evaluación realizada al modelo de red neuronal analizado para la clasificación de fallas mostraron que se obtienen errores inferiores al 1% para las 11 tipos fallas simuladas.

Cabe resaltar, que a pesar de que el modelo neuronal con regularización bayesiana y finalización temprana ofrece errores relativamente bajos, presenta el inconveniente de ser una caja negra rígida, es decir, la red neuronal simplemente evalúa sus entradas y produce sus salidas, pero no se sabe cómo. Por esta razón, cuando ocurre una clasificación errónea, no hay forma de realizar cambios y la red debe volver a entrenarse por completo, lo que no es apropiado desde un punto de vista práctico.

Referencias Bibliográficas

- Agustin Flores Novelo, Eduardo Quiles Cucarrella Emilio García Moreno Francisco Morant Anglada . (2011). Avances en el diagnóstico de fallas en sistemas eléctricos de transporte mediante redes neuronales. *RIELAC, Vol.XXXII 2/2011*, 7-14.
- Gallego, J., & Castro, F. (2011). La Transformada Wavelet Aplicada a Los Sistemas Eléctricos de Potencia. Madrid España: Editorial Académica Española.
- Guzman, R. E. (2016). Aplicaciones de la transformada de Wavalet en la segmentacion de señales EGG. Habana Cuba: Editorial Unoversitaria de educacion superior.
- Hernández, C., Nieto, J., & Carrum, E. (2014). Detección y diagnóstico de fallas en sistemas eléctricos de potencia (SEP) combinando lógica difusa, métricas y una red neuronal probabilística. *Research in Computing Science* (72). https://www.rcs.cic.ipn.mx/2014_72/Deteccion%20y%20diagnostico%20de%20fallas%20en%20sistemas%20electricos%20de %20potencia%20_SEP_.pdf, pp. 47–59.
- León, T. (2015). Diseño e implementación de un método de localización de fallas de alta impedancia en líneas de transmisión de energía eléctrica aéreas basado en redes neuronales. Universidad Tecnológica de Bolivar. Cartagena de Indias. Colombia. Trabajo de Grado de Maestría. https://repositorio.utb.edu.co/handle/20.500.12585/3421?locale-attribute=en#page=1, pp.185.
- Liquinchana, D. (2022). Clasificación de Fallas Eléctricas Aplicando Redes Neuronales Artificiales a la Protección de Distancia de Líneas de Transmisión Basada en el Algoritmo de Levenberg-Marquardt. Universidad Politécnica Salesiana. Ecuador. https://repositorioslatinoamericanos.uchile.cl/handle/2250/4570089, pp.16-20.
- Morán, L. I. (2001). Potencia en Régimen No-Sinusodial. Madrid España: Editorial. Universidad de Cantabria.
- Morillo, E. (2014). Metodologia para deteccion, clasificacion y localizacion de fallas en redes de alta tension usando transformada wavelet y redes neuronales. *Universidad Valencia*, pp.11-13.
- Mujal, R. (2014). Protección de sistemas eléctricos de potencia. Barcelona-España: Editorial Girona. Primera edición. ISBN: 978-84-7653-973-6. Pág. 274. https://upcommons.upc.edu/bitstream/handle/2099.3/36676/9788476539736.pdf?sequence=1&isAllowed=y.
- Padrón, S. (2015). Inteligencia Artificial en la Operación de Redes Eléctricas. Aplicación a sistemas aislados. Universidad de Las Palmas de Gran Canaria. Instituto Universitario SIANI. Tesis Doctoral. https://accedacris.ulpgc.es/bitstream/10553/17092/3/0722383_00000_0000.pdf, pp.328.

Palma Behnke, R. (2008). Los Sistemas Eléctricos de Potencia. Pearson, Prentice Hall.

Rodríguez, F. (2011). Diagnóstico de Fallos y Condiciones Anormales de Trabajo en Líneas de Transmisión Con el Empleo de Redes Neuronales Artificiales. *Centro de Información y Gestión Tecnológica de Santiago de Cuba*, pp.5-8.