Heterogeneous catalytic system for biofuel generation

Authors

  • Alex Frederick Mosquera Canchingre Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas-Ecuador. https://orcid.org/0000-0003-2295-4211
  • Joseph Alfonso Cruel Sigüenza Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas, Ecuador.
  • Juan Enrique Tacoronte Morales Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas, Ecuador.
  • Carla Bernal Villavicencio Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas, Ecuador. https://orcid.org/0000-0002-1510-2996
  • María Elizabeth Canchingre Bone Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas-Ecuador

DOI:

https://doi.org/10.51798/sijis.v3i2.359

Keywords:

Frying oil; Transesterification; Heterogeneous catalysis; Biodiesel; Vanadyl phosphate

Abstract

The utilization of used frying oil (AFU) as an eco-sustainable and economic resource constitutes a viable and technically feasible strategy at the meso and macro scale for R&D programs in universities and in the implementation of policies for the use of waste with high added value. The AFU from some gastronomic centers in the city of Esmeraldas was used as raw material to obtain biofuel (biodiesel) via trans-esterification under heterogeneous catalytic conditions. Vanadyl phosphate (VOPO4) synthesized from depleted divanadium pentoxide from sulfuric acid synthesis was used as a catalyst for the process. To obtain biodiesel, pre-treatment processes were applied to the raw materials to eliminate solids and reduce moisture and acidity indexes; combustion in microwave ovens, calcination and sonochemical synthesis to obtain the catalyst. Using frying oil, vanadyl phosphate and methanol in a micro-reactor, at 115 °C and with 3% catalyst, biodiesel was obtained with satisfactory characteristics and yield. The optimum conditions determined for the trans-esterification process were: oil/methanol molar ratio of 1:12.83 and 4.85 hours of reaction.

Author Biographies

Alex Frederick Mosquera Canchingre, Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas-Ecuador.

Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas-Ecuador.

Joseph Alfonso Cruel Sigüenza, Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas, Ecuador.

Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas, Ecuador.

Juan Enrique Tacoronte Morales, Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas, Ecuador.

Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas, Ecuador.

Carla Bernal Villavicencio, Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas, Ecuador.

Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas, Ecuador.

María Elizabeth Canchingre Bone, Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas-Ecuador

Facultad de Ingenierías de la Universidad Técnica Luis Vargas Torres de Esmeraldas-Ecuador

References

Alfred Thomas (2002). Fats and Fatty Oils. «Ullmann's Encyclopedia of Industrial Chemistry». Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. ISBN 978-3527306732. doi:10.1002/14356007.a10_173

Baldeón, Iván, Sun-Kou, Rosario, & Picasso, Gino. (2019). Preparación de catalizadores basados en vanadil fosfatos de Fe soportados sobre Γ-Al2 O3 para la deshidrogenación oxidativa del etano. Revista de la Sociedad Química del Perú, 85(1), 69-84. Recuperado en 02 de febrero de 2022, de http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1810-634X2019000100008&lng=es&tlng=es.

Corma, A.; Iborra, S.; Miquel, S.; Primo, J. (1998). Catalysts for the production of fine chemicals: production of food emulsifiers, monoglycerides, by glycerolysis of fats with solid base catalysts. J. Catal., 173, 315-321.

Cuentas-Gallegos A.K, Vijayaraghavan, R., M. Lira-Cantú, M., N. Casañ-Pastor, N., Gómez-Romero P. (2014). Materiales híbridos basados en fosfato de vanadilo y polímeros conductores como cátodos en baterías reversibles de litio. Boletín de la Sociedad Española de Cerámica y Vidrio. 43(2), 429-433

Dahiya, A., Williams, C. & Porter, P. (2015). Introduction to Bioenergy. Bioenergy: Biomass to biofuels. Elsevier, 1-4.

Demirbas A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Management;50(1):14–34

Filliers, R.; Benjelloun-Mlayah; M., Delmas, M. (1995) Ethanolysis of rapeseed Oil: Quantitation of Ethyl Esters, Mono- Di- and triglycerides and Glycerol by High performance Size Exclusion Chomatography, J. Am. Oil Chem. Soc., 72 (4), 427-432.

García, A. (2013). Estimación del potencial de producción de biocombustibles en Costa Rica a partir de cultivos energéticos, agro-energéticos y aceites usados, al 2021. (Tesis de pregrado, Instituto Tecnológico de Costa Rica). Recuperado desde http://repositoriotec.tec.ac.cr/bitstream/handle/2238/3151/estimacion_potencial_produccion_biocombustibles.pdf?sequence=1, febrero 2022

Hoekman, K., Broch, A., Robbins, C., Ceniceros, E. & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16, 143-169.

Jacobson, K.; Gophinat, R.; Meher, C.L. (2008). Solid acid catalyzed biodiesel production from waste cooking oil. Appl. Catal. B-Environ., 85, 86-91

Kamaruzaman, W.; Mohamad Zin, N. (2019). Conference paper Recycle of Used Cooking Oil. June 2019 Conference: International Professional Learning Communities in Education 2019, 1-5.

Kulkarni, M.G.; Ajay, K.D. (2006). Waste cooking oil an economical source for biodiesel: a review. Ind. Eng. Chem. Res., 45, 2901-2913.

Lotero, E.; Liu, Y.; Lopez, D.; Suwannakaran, K.; Brucer, D.A.; Goodwin, J.G. (2005) Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res. 44, 5353-5363.

Mahlia, T. M. I., Syazmi, Z. A. H. S., Mofijur, M., Abas, A. E. P., Bilad, M. R., Ong, H. C., & Silitonga, A. S. (2020). Patent landscape review on biodiesel production: Technology updates. Renewable and Sustainable Energy Reviews, 118, 109526. doi: 10.1016/J.RSER.2019.109526

Math M., Sudheer Prem, K., Soma V. (2010), Technologies for biodiesel production from used cooking oil. Energy for Sustainable Development, Vol. 14, 339–345.

Mukhtar, A. et al. (2022) Current status and challenges in the heterogeneous catalysis for biodiesel production. Renewable and Sustainable Energy Reviews, 157(4), 112012

Mumtaz, M. W., Adnan, A., Mukhtar, H., Rashid, U., & Danish, M. (2017). Biodiesel Production Through Chemical and Biochemical Transesterification. Clean Energy for Sustainable Development, 465–485. doi:10.1016/b978-0-12-805423-9.00015-6

N.G. Park, K.M. Kim, y S.H. Chang. (2001). Sonochemical synthesis of the high energy density cathode material VOPO4.2H2O, Electrochem. Commun. 3, 553-556

Narváez Rincón, P.; Torres, J.; Sánchez Castellanos, F.; Ponce de León, L. (2005). Determinación por cromatografía de gases de alquil ésteres (metílico y etílico) de ácidos grasos, en presencia de mono-, di-, y triglicéridos Ingeniería e Investigación, vol. 25(1), 58-62

Rizwanul Fattah I.M., Ong H.C., Mahlia T.M.I., Mofijur M., Silitonga A.S., Rahman S.M.A. and Ahmad A. (2020) State of the Art of Catalysts for Biodiesel Production. Front. Energy Res. 8:101. doi: 10.3389/fenrg.2020.001013

The biodiesel handbook. (2005) Champaign, IL: AOCS Press.

Zabeti, M., Wan Daud, W. M. A., and Aroua, M. K. (2009). Activity of solid catalysts for biodiesel production: a review. Fuel Process. Technol. 90, 770–777. doi: 10.1016/j.fuproc.2009.03.010

Zarli, A. (2019). Oleochemicals: all time players of green chemistry. Catalysis, Green Chemistry and Sustainable Energy, 77–95. doi:10.1016/b978-0-444-64337-7.00006-9

Zhang, W.-B. (2012). Review on analysis of biodiesel with infrared spectroscopy. Renewable and Sustainable Energy Reviews, 16(8), 6048–6058. doi:10.1016/j.rser.2012.07.003.]

Published

2022-05-14

How to Cite

Mosquera Canchingre, A. F., Cruel Sigüenza, J. A., Tacoronte Morales, J. E. ., Bernal Villavicencio, C. ., & Canchingre Bone, . M. E. . (2022). Heterogeneous catalytic system for biofuel generation. Sapienza: International Journal of Interdisciplinary Studies, 3(2), 549–559. https://doi.org/10.51798/sijis.v3i2.359

Issue

Section

Continuous flow- Articles, Essays, Professional Case Studies