Impacts of distributed generation on the smart grid: a documentary analysis

Authors

  • Jorge Daniel Mercado-Bautista Instituto de Posgrado de la Universidad Técnica de Manabí-Ecuador
  • Byron Fernando Chere-Quiñónez Instituto de Posgrado de la Universidad Técnica de Manabí-Ecuador
  • Alejandro Javier Martínez-Peralta Instituto de Posgrado de la Universidad Técnica de Manabí-Ecuador

DOI:

https://doi.org/10.51798/sijis.v3i2.365

Keywords:

Smart Grid, Intelligent Network and Distributed Generation

Abstract

This article discusses the impacts of distributed generation on Smart Grid technology, in particular identifies and determines whether the system remains stable or not after installing distributed generation on Smart Grid systems. The methodology applied is of a qualitative-documentary nature, since its purpose is to carry out a bibliographical review to evaluate the evolution of the current centralized generation in the form of distributed generation and intelligent networks, offering a great opportunity to eradicate several problems associated with efficiency. energy, energy security, energy quality and the inconvenience of aging electrical system infrastructures. In order to meet the growing demand for electrical energy and increase the quality of service, as well as reduce pollution, the existing electrical grid infrastructure must be developed into a smart grid that has the flexibility to allow interconnection with distributed generation. However, the integration of distributed generation to power systems causes several technical problems, especially system stability. Therefore, to fully address the issue, current existing power systems need to be upgraded to Smart Grid. To make the power grid "smarter", particularly in terms of stability and flexibility, Flexible AC Transmission System (FACTS) devices are used, especially Static VAR Compensators (SVC).

Author Biographies

Jorge Daniel Mercado-Bautista, Instituto de Posgrado de la Universidad Técnica de Manabí-Ecuador

Instituto de Posgrado de la Universidad Técnica de Manabí-Ecuador

Byron Fernando Chere-Quiñónez, Instituto de Posgrado de la Universidad Técnica de Manabí-Ecuador

Instituto de Posgrado de la Universidad Técnica de Manabí-Ecuador

Alejandro Javier Martínez-Peralta, Instituto de Posgrado de la Universidad Técnica de Manabí-Ecuador

Instituto de Posgrado de la Universidad Técnica de Manabí-Ecuador

References

Abdmouleh, Z., Gastli, A., Ben-Brahim, L., Haouari, M., & Al-Emadi, N. A. (2017). Review of optimization techniques applied for the integration of distributed generation from renewable energy sources. Renewable Energy, Vol. 113, pp. 266–280. Elsevier Ltd. https://doi.org/10.1016/j.renene.2017.05.087

Abur, A., Alvarado, F. L., Bel, C. A., & Canizares, C. (2010). Análisis y operación de sistemas de energía eléctrica.

Benoit, I. (2003). Center for Economic Studies Working Paper Series Distributed Generation : Definition , Benefits and Issues. Energy, Vol. 32, pp. 0–21.

Carolina Toro. (2016). Redes inteligentes Benchmarking Latinoamérica.

Driesen, J., & Belmans, R. (2006). Distributed generation: Challenges and possible solutions. 2006 IEEE Power Engineering Society General Meeting, PES, pp. 1–8. https://doi.org/10.1109/pes.2006.1709099

Durán Tovar, I. C., & Flórez Cediel, O. D. (2010). Análisis de la estabilidad del ángulo del rotor de un sistema máquina-barra infinita. Revista Clepsidra, Vol. 6, pp. 13–20. https://doi.org/10.26564/19001355.65

González-Longatt, F. M. (2004). Tecnologías de Generación Distribuida : Costos y Eficiencia. I Seminario de Ingeniería Eléctrica, Unexpo, Puerto Ordaz, p. 11.

González López Directores, Á. J., & Eloy-García Carrasco Manuel García Plaza, J. (2012). Gestión De La Energía En Una Red Inteligente. Gestion de La Energia En Una Red Electrica, pp. 60–115.

Kabalcı, E., Kabalcı, Y., & Siano, P. (2022). Design and implementation of a smart metering infrastructure for low voltage microgrids. International Journal of Electrical Power and Energy Systems, Vol. 134, p. 107375. Elsevier Ltd. https://doi.org/10.1016/j.ijepes.2021.107375

Khederzadeh, M., Javadi, H., & Mousavi, S. M. A. (2019). IMPACT OF DISTRIBUTED GENERATION (DG) ON THE DISTRIBUTION SYSTEM NETWORK. IET Conference Publications, Vol. 2019, pp. 165–170. https://doi.org/10.1049/cp.2010.0299

Luè, A., Bresciani, C., Colorni, A., Lia, F., Maras, V., Radmilović, Z., … Anoyrkati, E. (2016). Future priorities for a climate-friendly transport: A European strategic research agenda toward 2030. International Journal of Sustainable Transportation, Vol. 10, pp. 236–246. https://doi.org/10.1080/15568318.2014.893043

Lui, B. T. J., Stirling, W., & Marcy, H. O. (2010). Using Demand Response with. Energy.

Mahadanaarachchi, V. P., & Ramakumar, R. (2008). Impact of Distributed Generation on distance protection performance - A review. IEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES, pp. 1–7. https://doi.org/10.1109/PES.2008.4596707

Mehigan, L., Deane, J. P., Gallachóir, B. P. Ó., & Bertsch, V. (2018). A review of the role of distributed generation (DG) in future electricity systems. Energy, Vol. 163, pp. 822–836. https://doi.org/10.1016/j.energy.2018.08.022

Moghaddam, M. J. H., Kalam, A., Shi, J., Nowdeh, S. A., Gandoman, F. H., & Ahmadi, A. (2020). A New Model for Reconfiguration and Distributed Generation Allocation in Distribution Network Considering Power Quality Indices and Network Losses. IEEE Systems Journal, Vol. 14, pp. 3530–3538. IEEE. https://doi.org/10.1109/JSYST.2019.2963036

Pecas Lopes, A. (2002). Integration of dispersed generation on distribution networks- impact studies (Vol. 00). Vol. 00.

Qian, K., Zhou, C., Yuan, Y., Shi, X., & Allan, M. (2008). Analysis of the environmental benefits of Distributed Generation. IEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES, pp. 1–5. https://doi.org/10.1109/PES.2008.4596137

Roncero, J. R. (2008). Integration is key to smart grid management. IET Seminar Digest, Vol. 2008, pp. 23–24. https://doi.org/10.1049/ic:20080430

Sánchez, D., & Barrera, C. (2018). Estabilidad de voltaje en sistemas eléctricos de potencia incluyendo curvas de capacidad para líneas de transmisión basado en el método cpf. IEEE Latin America Transactions, p. 30.

SÁNCHEZ OÑATE, P. S. (2020). Estabilidad De Frecuencia En Sistemas Eléctricos De Potencia Considerando Generación No Inercial (p. 34). p. 34.

Sekaran, Holliday, C. O. J., Schmidheiny, S., Watts, P., Schmidheiny, S., Watts, P., … Branch, B. (2018). USO DEL HIDRÓGENO COMO FUENTE ALTERNATIVA PARA ALIMENTAR PILAS DE COMBUSTIBLE. Pakistan Research Journal of Management Sciences, Vol. 7, pp. 1–2.

Slootweg, J. G., De Haan, S. W. H., Polinder, H., & Kling, W. L. (2002). Modeling new generation and storage technologies in power system dynamics simulations. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, Vol. 2, pp. 868–873. https://doi.org/10.1109/pess.2002.1043466

SMVITM. (2018). Strategic Planning And Deployment Document (pp. 1–20). pp. 1–20.

Srivastava, A. K., Kumar, A. A., & Schulz, N. N. (2012). Impact of distributed generations with energy storage devices on the electric grid. IEEE Systems Journal, Vol. 6, pp. 110–117. https://doi.org/10.1109/JSYST.2011.2163013

Thong, V. Van, & Driesen, J. (2008). Distributed Generation and Power Quality. Handbook of Power Quality, pp. 521–528. https://doi.org/10.1002/9780470754245.ch16

Published

2022-05-14

How to Cite

Mercado-Bautista, J. D. ., Chere-Quiñónez, B. F. ., & Martínez-Peralta, A. J. . (2022). Impacts of distributed generation on the smart grid: a documentary analysis. Sapienza: International Journal of Interdisciplinary Studies, 3(2), 593–609. https://doi.org/10.51798/sijis.v3i2.365

Issue

Section

Continuous flow- Articles, Essays, Professional Case Studies