State of the art of hydro-thermal-wind economic dispatch using heuristic techniques
DOI:
https://doi.org/10.51798/sijis.v3i2.378Keywords:
Generation economic dispatch, Hydrothermal dispatch, Hydro-thermal-wind dispatch, Heuristic techniquesAbstract
Hydrothermal planning has been seen as an optimization problem, where the aim is to minimize the fuel cost of thermoelectric power plants by searching the optimal dispatch scheme. The economic operation of power plants, thermal and hydro electrical units has been performed by deterministic methodologies, which the majority of times are extremely complicated to implement on large power systems. Set in this context, heuristic techniques have been implemented to solve the optimization problem in a simpler mathematical formulation including non-conventional renewable energy sources such as wind energy. The present analysis provides a comparative review based on the results obtained in different relevant articles that provide a satisfactory solution to the hydrothermal problem based on heuristic techniques for standard test systems.
References
Bai, X., & Shahidehpour, S. M. (1996). Hydro-thermal scheduling by Tabu Search and Decomposition Method. IEEE Transactions on Power Systems, 11(2), 968–974.
Balachander, T., Jeyanthy, P. A., & Devaraj, D. (2018). Short term hydro thermal scheduling using flower pollination algorithm. Proceedings of the 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing, INCOS 2017, 2018-Febru, 1–5. https://doi.org/10.1109/ITCOSP.2017.8303162
Banerjee, S., Dasgupta, K., & Chanda, C. K. (2016). Short term hydro-wind-thermal scheduling based on particle swarm optimization technique. International Journal of Electrical Power and Energy Systems, 81, 275–288. https://doi.org/10.1016/j.ijepes.2016.01.031
Chang, G. W., Aganagic, M., Waight, J. G., Medina, J., Burton, T., Reeves, S., & Christoforidis, M. (2001). Experiences With Mixed Integer Linear Programming Based Approaches on Short-Term Hydro Scheduling. IEEE Transactions on Power Systems, 16(4), 743–749.
Chen, C. L. (2007). Simulated annealing-based optimal wind-thermal coordination scheduling. IET Generation, Transmission and Distribution, 1(3), 447–455. https://doi.org/10.1049/iet-gtd:20060208
Conejo, A. J., Arroyo, J. M., Contreras, J., & Villamor, F. A. (2002). Self-scheduling of a hydro producer in a pool-based electricity market. IEEE Transactions on Power Systems, 17(4), 1265–1271. https://doi.org/10.1109/TPWRS.2002.804951
Davis, L. (1991). Handbook of genetic algorithms. Van Nostrand Reinhold.
De Queiroz, A. R. (2016). Stochastic hydro-thermal scheduling optimization: An overview. Renewable and Sustainable Energy Reviews, 62, 382–395. https://doi.org/10.1016/j.rser.2016.04.065
Dubey, H. M., Pandit, M., & Panigrahi, B. K. (2015). Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch. Renewable Energy, 83, 188–202. https://doi.org/10.1016/j.renene.2015.04.034
Dubey, H. M., Pandit, M., & Panigrahi, B. K. (2016). Ant lion optimization for short-term wind integrated hydrothermal power generation scheduling. International Journal of Electrical Power and Energy Systems, 83, 158–174. https://doi.org/10.1016/j.ijepes.2016.03.057
Farhat, I. A., & El-Hawary, M. E. (2009). Short-Term Hydro-Thermal Scheduling Using an Improved Bacterial Foraging Algorithm. 1–5.
Gil, E., & Araya, J. (2016). Short-term Hydrothermal Generation Scheduling Using a Parallelized Stochastic Mixed-integer Linear Programming Algorithm. Energy Procedia, 87, 77–84. https://doi.org/10.1016/j.egypro.2015.12.360
Gil, E., Bustos, J., & Rudnick, H. (2003). Short-Term Hydrothermal Generation Scheduling Model Using a Genetic Algorithm. IEEE Transactions on Power Systems, 18(4), 1256–1264. https://doi.org/10.1109/TPWRS.2003.819877
Hincapié Isaza, R., Gallego Rendón, R., & Ríos Porras, C. (2004). Técnicas Heurísticas Aplicadas Al Problema Del Cartero Viajante (Tsp). Técnicas Heurísticas Aplicadas Al Problema Del Cartero Viajante (Tsp)., 1(24), 1–6. https://doi.org/10.22517/23447214.7279
Homem-De-Mello, T., De Matos, V. L., & Finardi, E. C. (2011). Sampling strategies and stopping criteria for stochastic dual dynamic programming: A case study in long-term hydrothermal scheduling. Energy Systems, 2(1), 1–31. https://doi.org/10.1007/s12667-011-0024-y
Jian, J., Pan, S., & Yang, L. (2019). Solution for short-term hydrothermal scheduling with a logarithmic size mixed-integer linear programming formulation. Energy, 171, 770–784. https://doi.org/10.1016/j.energy.2019.01.038
Kumar, V. S., & Mohan, M. R. (2011). A genetic algorithm solution to the optimal short-term hydrothermal scheduling. International Journal of Electrical Power and Energy Systems, 33(4), 827–835. https://doi.org/10.1016/j.ijepes.2010.11.008
Marwali, M. K. C., & Shahidehpour, S. M. (2000). Coordination between long-term and short-term generation scheduling with network constraints. IEEE Transactions on Power Systems, 15(3), 1161–1167. https://doi.org/10.1109/59.871749
Nallasivan, C., Suman, D. S., Henry, J., & Ravichandran, S. (2005). A novel approach for short-term hydrothermal scheduling using hybrid technique. 2006 IEEE Power India Conference, 2005, 703–707. https://doi.org/10.1109/POWERI.2006.1632593
Nayak, N. C., & Rajan, C. C. A. (2012). Hydro-Thermal Scheduling by a Hybrid Evolutionary Programming - Tabu Search Method with Cooling - Banking Constraints. 2012 International Conference on Computing, Electronics and Electrical Technologies [ICCEET], 98–103.
Nazari-Heris, M., Mohammadi-Ivatloo, B., & B. Gharehpetian, G. (2017). Short-term scheduling of hydro-based power plants considering application of heuristic algorithms: A comprehensive review. Renewable and Sustainable Energy Reviews, 74(February), 116–129. https://doi.org/10.1016/j.rser.2017.02.043
Salam, M. S., Nor, K. M., & Hamdan, A. R. (1998). Hydrothermal scheduling based lagrangian relaxation approach to hydrothermal coordination. IEEE Transactions on Power Systems, 13(1), 226–235. https://doi.org/10.1109/59.651640
Samudi, C., Das, G. P., Ojha, P. C., Sreeni, T. S., & Cherian, S. (2008). Hydro thermal scheduling using particle swarm optimization. Transmission and Distribution Exposition Conference: 2008 IEEE PES Powering Toward the Future, PIMS 2008, 3–7. https://doi.org/10.1109/TDC.2008.4517221
Sinha, N., Chakrabarti, R., & Chattopadhyay, P. K. (2003a). Fast evolutionary programming techniques for short-term hydrothermal scheduling. Electric Power Systems Research, 66(2), 97–103. https://doi.org/10.1016/S0378-7796(03)00016-6
Sinha, N., Chakrabarti, R., & Chattopadhyay, P. K. (2003b). Fast Evolutionary Programming Techniques for Short-Term Hydrothermal Scheduling. IEEE Transactions on Power Systems, 18(1), 214–220. https://doi.org/10.1109/TPWRS.2002.807053
Sinha, N., & Lai, L. L. (2006). Meta heuristic search algorithms for short-term hydrothermal scheduling. Proceedings of the 2006 International Conference on Machine Learning and Cybernetics, 2006(August), 4050–4056. https://doi.org/10.1109/ICMLC.2006.258860
Siqueira, T. G., Zambelli, M., Cicogna, M., Andrade, M., & Soares, S. (2006). Stochastic dynamic programming for long term hydrothermal scheduling considering different streamflow models. 2006 9th International Conference on Probabilistic Methods Applied to Power Systems, PMAPS, 1–6. https://doi.org/10.1109/PMAPS.2006.360203
Tehzeeb-ul-Hassan, Alquthami, T., Butt, S. E., Tahir, M. F., & Mehmood, K. (2020). Short-term optimal scheduling of hydro-thermal power plants using artificial bee colony algorithm. Energy Reports, 6, 984–992. https://doi.org/10.1016/j.egyr.2020.04.003
Tovey, C. A. (2018). Nature-Inspired Heuristics : Overview and Critique. INFORMS TutORials in Operations Research, October.
Wong, K. P., & Wong, Y. W. (1994). Short-term hydrothermal scheduling. Part I: Simulated annealing approach. IEE Proceedings: Generation, Transmission and Distribution, 141(5), 497–501. https://doi.org/10.1049/ip-gtd:19941350
Wong, Kit Po, & Wong, Y. W. (1994). Short-term hydrothermal scheduling with reservoir volume constraints. Part II: Parallel simulated annealing approach. IEE Conference Publication, 2(388), 559–564.
Wood, A. J., & Wollenberg, B. F. (1996). Power Generation, Operation and control (2nd ed.). John Wiley & Sons.
Wu, Y. G., Ho, C. Y., & Wang, D. Y. (2000). A diploid genetic approach to short-term scheduling of hydro-thermal system. IEEE Transactions on Power Systems, 15(4), 1268–1274. https://doi.org/10.1109/59.898100
Yin Wa Wong, S. (2001). Hybrid simulated annealing/genetic algorithm approach to short-term hydro-thermal scheduling with multiple thermal plants. International Journal of Electrical Power and Energy Systems, 23(7), 565–575. https://doi.org/10.1016/S0142-0615(00)00029-6
Yuan, X., Tian, H., Yuan, Y., Huang, Y., & Ikram, R. M. (2015). An extended NSGA-III for solution multi-objective hydro-thermal-wind scheduling considering wind power cost. Energy Conversion and Management, 96, 568–578. https://doi.org/10.1016/j.enconman.2015.03.009
Zaghlool, M. F., & Trutt, F. C. (1988). Efficient methods for optimal scheduling of fixed head hydrothermal power systems. IEEE Transactions on Power Systems, 3(1), 24–30. https://doi.org/10.1109/59.43176
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Carlos Barrera-Singaña, Peter Vallejo-Correa
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.