State of the art of hydro-thermal-wind economic dispatch using heuristic techniques

Authors

DOI:

https://doi.org/10.51798/sijis.v3i2.378

Keywords:

Generation economic dispatch, Hydrothermal dispatch, Hydro-thermal-wind dispatch, Heuristic techniques

Abstract

Hydrothermal planning has been seen as an optimization problem, where the aim is to minimize the fuel cost of thermoelectric power plants by searching the optimal dispatch scheme. The economic operation of power plants, thermal and hydro electrical units has been performed by deterministic methodologies, which the majority of times are extremely complicated to implement on large power systems. Set in this context, heuristic techniques have been implemented to solve the optimization problem in a simpler mathematical formulation including non-conventional renewable energy sources such as wind energy. The present analysis provides a comparative review based on the results obtained in different relevant articles that provide a satisfactory solution to the hydrothermal problem based on heuristic techniques for standard test systems.

Author Biographies

Carlos Barrera-Singaña, Universidad Politécnica Salesiana

Universidad Politécnica Salesiana - Ecuador

Peter Vallejo-Correa, Universidad Politécnica Salesiana – Ecuador

Universidad Politécnica Salesiana – Ecuador

References

Bai, X., & Shahidehpour, S. M. (1996). Hydro-thermal scheduling by Tabu Search and Decomposition Method. IEEE Transactions on Power Systems, 11(2), 968–974.

Balachander, T., Jeyanthy, P. A., & Devaraj, D. (2018). Short term hydro thermal scheduling using flower pollination algorithm. Proceedings of the 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing, INCOS 2017, 2018-Febru, 1–5. https://doi.org/10.1109/ITCOSP.2017.8303162

Banerjee, S., Dasgupta, K., & Chanda, C. K. (2016). Short term hydro-wind-thermal scheduling based on particle swarm optimization technique. International Journal of Electrical Power and Energy Systems, 81, 275–288. https://doi.org/10.1016/j.ijepes.2016.01.031

Chang, G. W., Aganagic, M., Waight, J. G., Medina, J., Burton, T., Reeves, S., & Christoforidis, M. (2001). Experiences With Mixed Integer Linear Programming Based Approaches on Short-Term Hydro Scheduling. IEEE Transactions on Power Systems, 16(4), 743–749.

Chen, C. L. (2007). Simulated annealing-based optimal wind-thermal coordination scheduling. IET Generation, Transmission and Distribution, 1(3), 447–455. https://doi.org/10.1049/iet-gtd:20060208

Conejo, A. J., Arroyo, J. M., Contreras, J., & Villamor, F. A. (2002). Self-scheduling of a hydro producer in a pool-based electricity market. IEEE Transactions on Power Systems, 17(4), 1265–1271. https://doi.org/10.1109/TPWRS.2002.804951

Davis, L. (1991). Handbook of genetic algorithms. Van Nostrand Reinhold.

De Queiroz, A. R. (2016). Stochastic hydro-thermal scheduling optimization: An overview. Renewable and Sustainable Energy Reviews, 62, 382–395. https://doi.org/10.1016/j.rser.2016.04.065

Dubey, H. M., Pandit, M., & Panigrahi, B. K. (2015). Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch. Renewable Energy, 83, 188–202. https://doi.org/10.1016/j.renene.2015.04.034

Dubey, H. M., Pandit, M., & Panigrahi, B. K. (2016). Ant lion optimization for short-term wind integrated hydrothermal power generation scheduling. International Journal of Electrical Power and Energy Systems, 83, 158–174. https://doi.org/10.1016/j.ijepes.2016.03.057

Farhat, I. A., & El-Hawary, M. E. (2009). Short-Term Hydro-Thermal Scheduling Using an Improved Bacterial Foraging Algorithm. 1–5.

Gil, E., & Araya, J. (2016). Short-term Hydrothermal Generation Scheduling Using a Parallelized Stochastic Mixed-integer Linear Programming Algorithm. Energy Procedia, 87, 77–84. https://doi.org/10.1016/j.egypro.2015.12.360

Gil, E., Bustos, J., & Rudnick, H. (2003). Short-Term Hydrothermal Generation Scheduling Model Using a Genetic Algorithm. IEEE Transactions on Power Systems, 18(4), 1256–1264. https://doi.org/10.1109/TPWRS.2003.819877

Hincapié Isaza, R., Gallego Rendón, R., & Ríos Porras, C. (2004). Técnicas Heurísticas Aplicadas Al Problema Del Cartero Viajante (Tsp). Técnicas Heurísticas Aplicadas Al Problema Del Cartero Viajante (Tsp)., 1(24), 1–6. https://doi.org/10.22517/23447214.7279

Homem-De-Mello, T., De Matos, V. L., & Finardi, E. C. (2011). Sampling strategies and stopping criteria for stochastic dual dynamic programming: A case study in long-term hydrothermal scheduling. Energy Systems, 2(1), 1–31. https://doi.org/10.1007/s12667-011-0024-y

Jian, J., Pan, S., & Yang, L. (2019). Solution for short-term hydrothermal scheduling with a logarithmic size mixed-integer linear programming formulation. Energy, 171, 770–784. https://doi.org/10.1016/j.energy.2019.01.038

Kumar, V. S., & Mohan, M. R. (2011). A genetic algorithm solution to the optimal short-term hydrothermal scheduling. International Journal of Electrical Power and Energy Systems, 33(4), 827–835. https://doi.org/10.1016/j.ijepes.2010.11.008

Marwali, M. K. C., & Shahidehpour, S. M. (2000). Coordination between long-term and short-term generation scheduling with network constraints. IEEE Transactions on Power Systems, 15(3), 1161–1167. https://doi.org/10.1109/59.871749

Nallasivan, C., Suman, D. S., Henry, J., & Ravichandran, S. (2005). A novel approach for short-term hydrothermal scheduling using hybrid technique. 2006 IEEE Power India Conference, 2005, 703–707. https://doi.org/10.1109/POWERI.2006.1632593

Nayak, N. C., & Rajan, C. C. A. (2012). Hydro-Thermal Scheduling by a Hybrid Evolutionary Programming - Tabu Search Method with Cooling - Banking Constraints. 2012 International Conference on Computing, Electronics and Electrical Technologies [ICCEET], 98–103.

Nazari-Heris, M., Mohammadi-Ivatloo, B., & B. Gharehpetian, G. (2017). Short-term scheduling of hydro-based power plants considering application of heuristic algorithms: A comprehensive review. Renewable and Sustainable Energy Reviews, 74(February), 116–129. https://doi.org/10.1016/j.rser.2017.02.043

Salam, M. S., Nor, K. M., & Hamdan, A. R. (1998). Hydrothermal scheduling based lagrangian relaxation approach to hydrothermal coordination. IEEE Transactions on Power Systems, 13(1), 226–235. https://doi.org/10.1109/59.651640

Samudi, C., Das, G. P., Ojha, P. C., Sreeni, T. S., & Cherian, S. (2008). Hydro thermal scheduling using particle swarm optimization. Transmission and Distribution Exposition Conference: 2008 IEEE PES Powering Toward the Future, PIMS 2008, 3–7. https://doi.org/10.1109/TDC.2008.4517221

Sinha, N., Chakrabarti, R., & Chattopadhyay, P. K. (2003a). Fast evolutionary programming techniques for short-term hydrothermal scheduling. Electric Power Systems Research, 66(2), 97–103. https://doi.org/10.1016/S0378-7796(03)00016-6

Sinha, N., Chakrabarti, R., & Chattopadhyay, P. K. (2003b). Fast Evolutionary Programming Techniques for Short-Term Hydrothermal Scheduling. IEEE Transactions on Power Systems, 18(1), 214–220. https://doi.org/10.1109/TPWRS.2002.807053

Sinha, N., & Lai, L. L. (2006). Meta heuristic search algorithms for short-term hydrothermal scheduling. Proceedings of the 2006 International Conference on Machine Learning and Cybernetics, 2006(August), 4050–4056. https://doi.org/10.1109/ICMLC.2006.258860

Siqueira, T. G., Zambelli, M., Cicogna, M., Andrade, M., & Soares, S. (2006). Stochastic dynamic programming for long term hydrothermal scheduling considering different streamflow models. 2006 9th International Conference on Probabilistic Methods Applied to Power Systems, PMAPS, 1–6. https://doi.org/10.1109/PMAPS.2006.360203

Tehzeeb-ul-Hassan, Alquthami, T., Butt, S. E., Tahir, M. F., & Mehmood, K. (2020). Short-term optimal scheduling of hydro-thermal power plants using artificial bee colony algorithm. Energy Reports, 6, 984–992. https://doi.org/10.1016/j.egyr.2020.04.003

Tovey, C. A. (2018). Nature-Inspired Heuristics : Overview and Critique. INFORMS TutORials in Operations Research, October.

Wong, K. P., & Wong, Y. W. (1994). Short-term hydrothermal scheduling. Part I: Simulated annealing approach. IEE Proceedings: Generation, Transmission and Distribution, 141(5), 497–501. https://doi.org/10.1049/ip-gtd:19941350

Wong, Kit Po, & Wong, Y. W. (1994). Short-term hydrothermal scheduling with reservoir volume constraints. Part II: Parallel simulated annealing approach. IEE Conference Publication, 2(388), 559–564.

Wood, A. J., & Wollenberg, B. F. (1996). Power Generation, Operation and control (2nd ed.). John Wiley & Sons.

Wu, Y. G., Ho, C. Y., & Wang, D. Y. (2000). A diploid genetic approach to short-term scheduling of hydro-thermal system. IEEE Transactions on Power Systems, 15(4), 1268–1274. https://doi.org/10.1109/59.898100

Yin Wa Wong, S. (2001). Hybrid simulated annealing/genetic algorithm approach to short-term hydro-thermal scheduling with multiple thermal plants. International Journal of Electrical Power and Energy Systems, 23(7), 565–575. https://doi.org/10.1016/S0142-0615(00)00029-6

Yuan, X., Tian, H., Yuan, Y., Huang, Y., & Ikram, R. M. (2015). An extended NSGA-III for solution multi-objective hydro-thermal-wind scheduling considering wind power cost. Energy Conversion and Management, 96, 568–578. https://doi.org/10.1016/j.enconman.2015.03.009

Zaghlool, M. F., & Trutt, F. C. (1988). Efficient methods for optimal scheduling of fixed head hydrothermal power systems. IEEE Transactions on Power Systems, 3(1), 24–30. https://doi.org/10.1109/59.43176

Published

2022-06-20

How to Cite

Barrera-Singaña, C., & Vallejo-Correa, P. . (2022). State of the art of hydro-thermal-wind economic dispatch using heuristic techniques. Sapienza: International Journal of Interdisciplinary Studies, 3(2), 762–773. https://doi.org/10.51798/sijis.v3i2.378

Issue

Section

Continuous flow- Articles, Essays, Professional Case Studies