Performance evaluation of a combined cycle thermoelectric plant based on its energy model

Authors

  • Carlos Barrera-Singaña Universidad Politécnica Salesiana - Ecuador https://orcid.org/0000-0003-1478-0952
  • Paola Reinoso Universidad Politécnica Salesiana – Ecuador
  • Pablo Tamayo Universidad Politécnica Salesiana – Ecuador
  • Manuel Darío Jaramillo-Monge Universidad Politécnica Salesiana – Ecuador

DOI:

https://doi.org/10.51798/sijis.v3i2.379

Keywords:

Combined cycle. Efficiency. Thermoelectric power plant. Brayton cycle. Rankine cycle. EES

Abstract

This document deals with an energy model of a combined cycle power plant based on the evaluation of its thermodynamic properties and with emphasis on an analysis from the point of view of Electrical Engineering, that is, without representing in detail its mechanical processes. A theoretical formulation of gas and steam cycles are performed, presenting a study case where not only the efficiency of each cycle is determined, but also the combination of both gas and steam cycles are analyzed. As a result, combined cycle power plant has a better performance than regular power plants. EES software is used to calculate the thermodynamic properties of thermal cycles, which has an extensive library with properties of several substances. Air as ideal gas and water are used in the present project to determine the overall cycle performance, where parametric analysis is carried out to obtain illustrative graphs and trends, which are the basis to take corrective actions to improve the performance of the combined cycle.

Author Biographies

Carlos Barrera-Singaña, Universidad Politécnica Salesiana - Ecuador

Universidad Politécnica Salesiana - Ecuador

Paola Reinoso, Universidad Politécnica Salesiana – Ecuador

Universidad Politécnica Salesiana – Ecuador

Pablo Tamayo, Universidad Politécnica Salesiana – Ecuador

Universidad Politécnica Salesiana – Ecuador

Manuel Darío Jaramillo-Monge, Universidad Politécnica Salesiana – Ecuador

Universidad Politécnica Salesiana – Ecuador

References

Annisa, R., Samuel, D., Jiwandono, K., Marteda, G., Atmajaya, G. K. M., Sinisuka, N. I., Dinata, I. S., Leilan, F., Revina, T., & Iman, D. (2019). Environmental Impact Assessment of Electricity Production from Combined Cycle Steam Power Plants with Life Cycle Assessment Approach Case Study: Muara Karang Power Plant. Proceedings of the 2nd International Conference on High Voltage Engineering and Power Systems: Towards Sustainable and Reliable Power Delivery, ICHVEPS 2019. https://doi.org/10.1109/ICHVEPS47643.2019.9011095

Blanco, J. M., & Peña, F. (2011). Incremento de la eficiencia en centrales termoeléctricas por aprovechamiento de los gases de la combustión. Información Tecnológica, 22(4), 15–22. https://doi.org/10.4067/S0718-07642011000400003

Gao, L., Xia, J., & Dai, Y. (2010). Modeling of combined cycle power plant based on a genetic algorithm parameter identification method. Proceedings - 2010 6th International Conference on Natural Computation, ICNC 2010, 7, 3369–3373. https://doi.org/10.1109/ICNC.2010.5583666

Gómez-Ríos, M. del C., Juárez-Luna, D., Gómez-Ríos, M. del C., & Juárez-Luna, D. (2019). Costo de generación eléctrica incorporando externalidades ambientales: Mezcla óptima de tecnologías de carga base. Revista Mexicana de Economía y Finanzas, 14(3), 353–377. https://doi.org/10.21919/REMEF.V14I3.308

Hossain, M. I., Zissan, I. A., Khan, M. S. M., Tushar, Y. R., & Jamal, T. (2014). Prospect of combined cycle power plant over conventional single cycle power plants in Bangladesh: A case study. 1st International Conference on Electrical Engineering and Information and Communication Technology, ICEEICT 2014. https://doi.org/10.1109/ICEEICT.2014.6919060

Kaewprapha, P., Prempaneerach, P., Singh, V., Tinikul, T., & Intarangsi, N. (2022). Machine Learning Approaches for Estimating the Efficiency of Combined Cycle Power Plant. 1–4. https://doi.org/10.1109/IEECON53204.2022.9741611

Malekli, M., Aslani, A., Zolfaghari, Z., Zahedi, R., & Moshari, A. (2022). Advanced bibliometric analysis on the development of natural gas combined cycle power plant with CO2 capture and storage technology. Sustainable Energy Technologies and Assessments, 52, 102339. https://doi.org/10.1016/J.SETA.2022.102339

Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2014). Fundamentals of Engineering Thermodynamics, 8th Edition. Wiley. https://www.worldcat.org/title/fundamentals-of-engineering-thermodynamics-8th-edition/oclc/1007076736&referer=brief_results

Nieto Usón, J. (2015). Modelado y estudio de una central térmica de ciclo combinado a carga parcial [Universidad de Zaragoza]. https://zaguan.unizar.es/record/37118?ln=es

Poliakova, O., Gabdulin, I., Chusovitin, P., & Pazderin, A. (2019). Improving of the combined cycle power plant operation under islanding conditions through voltage control. 2019 16th Conference on Electrical Machines, Drives and Power Systems, ELMA 2019 - Proceedings. https://doi.org/10.1109/ELMA.2019.8771655

Reshaeel, M., Javed, A., Jamil, A., Ali, M., Mahmood, M., & Waqas, A. (2022). Multiparametric optimization of a reheated organic Rankine cycle for waste heat recovery based repowering of a degraded combined cycle gas turbine power plant. Energy Conversion and Management, 254, 115237. https://doi.org/10.1016/J.ENCONMAN.2022.115237

Sabugal García, S., & Gómez Moñux, F. (2006). Centrales térmicas de ciclo combinado: teoría y proyecto. Ediciones Díaz de Santos.

Şaziye, B. (2017). Analysis of combined cycle efficiency by simulation and optimization. Energy Conversion and Management, 148, 174–183. https://doi.org/10.1016/j.enconman.2017.05.032

Sepúlveda, R. H. (2011). Modelación de centrales térmicas de ciclo combinado y su aplicación en el problema de predespacho de unidades. Universidad de Chile.

Suzaki, S., Kawata, K., Sekoguchi, M., & Goto, M. (2000). Mathematical model for a combined cycle plant and its implementation in an analogue power system simulator. 2000 IEEE Power Engineering Society, Conference Proceedings, 1, 416–421. https://doi.org/10.1109/PESW.2000.850000

Zhu, H., Xie, G., Yuan, H., & Nizetic, S. (2022). Thermodynamic assessment of combined supercritical CO2 cycle power systems with organic Rankine cycle or Kalina cycle. Sustainable Energy Technologies and Assessments, 52, 102166. https://doi.org/10.1016/J.SETA.2022.102166

Published

2022-06-20

How to Cite

Barrera-Singaña, C., Reinoso, P., Tamayo, P. ., & Jaramillo-Monge, M. D. . (2022). Performance evaluation of a combined cycle thermoelectric plant based on its energy model. Sapienza: International Journal of Interdisciplinary Studies, 3(2), 774–787. https://doi.org/10.51798/sijis.v3i2.379

Issue

Section

Continuous flow- Articles, Essays, Professional Case Studies