Analysis of the use of pattern recognition networks in the application of intelligent electrical networks

Authors

DOI:

https://doi.org/10.51798/sijis.v3i2.408

Keywords:

Input variables, energy consumption, The Neural Net Pattern Recognition

Abstract

Pattern recognition is based on recognizing the unique properties that identify an individual from others of the same species. The methodology was based on knowing the load and energy consumption generated by the Faculty of Mathematics, Physics and Chemistry of the Technical University of Manabí, in the same way the structure of "The Neural Net Pattern Recognition" was used. pattern recognition), which were trained to classify the inputs according to their classes, carried out using the Matlab R2017b software, with which the training of the network was done with different numbers of neurons in the hidden layer, where values ​​of 10,15,20,25 and 30 were used to obtain the lowest error, the following objectives were set: Know the load and the energy consumption that it generates in the FCMFQ, select the variable that will be established as inputs to the network, training of the smart network using the Matlab software and analyzing the results obtained with the training, The comparison between the different trainings of the network with the mentioned values ​​of the neurons was made, choosing to choose 30 neurons, obtaining the lowest error (0). In conclusion, the use of an intelligent electrical network with the implementation of the ANN technique is beneficial, since, if an intelligent electrical network is implemented throughout the UTM campus, it will be possible to obtain more profitable energy efficiency.

Author Biographies

Raúl Andrés García Talledo, Universidad Técnica de Manabí, Ecuador.

Maestría en Electricidad Mención Sistemas Eléctricos de Potencia - Universidad Técnica de Manabí, Ecuador.

Lenin Cuenca Álava, Universidad Técnica de Manabí, Ecuador

Universidad Técnica de Manabí, Ecuador

 

References

Abiodun, Oludare Isaac, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria Dada, Abubakar Malah Umar, Okafor Uchenwa Linus, Humaira Arshad, Abdullahi Aminu Kazaure, Usman Gana, y Muhammad Ubale Kiru. 2019. «Comprehensive review of artificial neural network applications to pattern recognition». IEEE Access 7:158820-46.

Alber, Maximilian, Sebastian Lapuschkin, Philipp Seegerer, Miriam Hägele, Kristof T. Schütt, Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller, Sven Dähne, y Pieter-Jan Kindermans. 2019. «iNNvestigate neural networks!» J. Mach. Learn. Res. 20(93):1-8.

Coaquira, Carlos. 2021. «Sílabo de Inteligencia Artificial».

Corona, Julio Camejo, Hector Gonzalez Diez, y Carlos Morell. 2020. «Un estudio empírico del modelo de red neuronal MLP para problemas de predicción con salidas múltiples.» Serie Científica de la Universidad de las Ciencias Informáticas 13(6):1-14.

Dick, Stephanie. 2019. «Artificial intelligence».

Flores, Fernando Alain Incio, Dulce Lucero Capuñay Sanchez, Ronald Omar Estela Urbina, Jorge Antonio Delgado Soto, y Segundo Edilberto Vergara Medrano. 2021. «Diseño e implementación de una red neuronal artificial para predecir el rendimiento académico en estudiantes de Ingeniería Civil de la UNIFSLB». REVISTA VERITAS ET SCIENTIA-UPT 10(1):107-17.

Jalali, Seyed Mohammad Jafar, Sajad Ahmadian, Abbas Khosravi, Miadreza Shafie-khah, Saeid Nahavandi, y Joao PS Catalao. 2021. «A novel evolutionary-based deep convolutional neural network model for intelligent load forecasting». IEEE Transactions on Industrial Informatics.

Li, Xinyi, Jianshi Tang, Qingtian Zhang, Bin Gao, J. Joshua Yang, Sen Song, Wei Wu, Wenqiang Zhang, Peng Yao, y Ning Deng. 2020. «Power-efficient neural network with artificial dendrites». Nature Nanotechnology 15(9):776-82.

Luna Perejón, Francisco. 2020. «Estudio e integración en sistemas empotrados de algoritmos de Aprendizaje Supervisado basados en Redes Neuronales Artificiales para el análisis de perturbaciones y eventos asociados a la marcha».

Moreno, Andrea Navarro. s. f. «Introducción a las Redes Neuronales aplicadas al Aprendizaje Supervisado».

Rizzo, Fabio, y Luca Caracoglia. 2020. «Artificial Neural Network model to predict the flutter velocity of suspension bridges». Computers & Structures 233:106236.

Silva-González, Sheyla Maleny. s. f. «Implementación de una red neuronal artificial como módulo de dominio de un sistema de». Dilemas Contemporáneos: Educación, Política y Valores. http://www. dilemascontemporaneoseducacionpoliticayvalores. com/.

Zhang, Qiming, Haoyi Yu, Martina Barbiero, Baokai Wang, y Min Gu. 2019. «Artificial neural networks enabled by nanophotonics». Light: Science & Applications 8(1):1-14.

Zhang, Zhen, Kuo Yang, Jinwu Qian, y Lunwei Zhang. 2019. «Real-time surface EMG pattern recognition for hand gestures based on an artificial neural network». Sensors 19(14):3170.

Published

2022-06-20

How to Cite

García Talledo, R. A. ., & Cuenca Álava, L. . (2022). Analysis of the use of pattern recognition networks in the application of intelligent electrical networks. Sapienza: International Journal of Interdisciplinary Studies, 3(2), 816–825. https://doi.org/10.51798/sijis.v3i2.408

Issue

Section

Continuous flow- Articles, Essays, Professional Case Studies