Deep learning applied to the strategic planning of the regional governments of the central macro region to determine the alignment with the policies of the central government

Authors

  • Richard Yuri Mercado Rivas Universidad Nacional del Centro del Perú – Perú
  • José Luis Cerrón Pérez Universidad Nacional del Centro del Perú – Perú
  • Omar Cipriano Raraz Tupac Yupanqui Universidad Nacional del Centro del Perú – Perú

DOI:

https://doi.org/10.51798/sijis.v3i4.436

Keywords:

Deep learning. Alignment of strategic plans. Government policies

Abstract

The strategic planning of the regional governments of the central macro region seems to operate independently from central government policies, showing a clear lack of alignment with respect to the continuous improvement of the education and health sectors, because although the national decrees dictate concrete objectives as achievement indicators, in practice these are not being achieved. In this research work, a documentary analysis of central government policies and strategic planning of the central macro region is developed, with a special focus on the health, education and other sectors, so that through the use of Deep Learning tools it is possible to determine the alignment of each of the regions to national policies. As a result, it was possible to create a model that can classify text through a short-term memory network (LSTM), which determined in percentage terms how many of the regional institutional strategic objectives are aligned to those established by the sectors of national scope such as health, education and others. On average, a value of 78.08 % coincidence was obtained for the total number of regional institutional strategic objectives aligned with those of the central government.

Author Biographies

Richard Yuri Mercado Rivas, Universidad Nacional del Centro del Perú – Perú

Universidad Nacional del Centro del Perú – Perú

José Luis Cerrón Pérez, Universidad Nacional del Centro del Perú – Perú

Universidad Nacional del Centro del Perú – Perú

Omar Cipriano Raraz Tupac Yupanqui, Universidad Nacional del Centro del Perú – Perú

Universidad Nacional del Centro del Perú – Perú

References

Annalisa Occhipinti, L. R. (22022). A pipeline and comparative study of 12 machine learning models for text classification. Expert Systems With Applications, 117193.

Centro Nacional de Planeamiento Estratégico. (2022). Aplicativo CPLAN v.01. https://www.ceplan.gob.pe/aplicativo-ceplan/

Centro Nacional de Planeamiento Estratégico. (2022). Módulo de Consulta PEI – POI. https://www.ceplan.gob.pe/modulo-de-consultas/

Chávez, C. & Zabala, A. (2019). Tendencias y dinámicas en los mercados de capitales en Colombia: una aplicación mediante Wordclouds [Proyecto de investigación, Universidad ICESI]. Repositorio ICESI. https://repository.icesi.edu.co/biblioteca_digital/handle/10906/85403

Chollet, F. (2017). Deep learning with python, vol. 1. Greenwich, CT: Manning Publications CO.

Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foundations and trends in signal processing, 7(3–4), 197-387.

Heimerl, F., Lohmann, S., Lange, S., & Ertl, T. (2014, January). Word cloud explorer: Text analytics based on word clouds. In 2014 47th Hawaii international conference on system sciences (pp. 1833-1842). IEEE.

Hernández-Sampieri, R., Fernández-Collado, C., & Baptista-Lucio, M. del P. (2014). Metodología de la investigación (6ta ed.). México D.F.: McGRAW-HILL / Interamericana Editores.

Huang, Y., Wang, Y., & Ye, F. (2019). A Study of the application of word cloud visualization in college english teaching. International Journal of Information and Education Technology, 9(2), 119-122.

Luo, X. (2021). Efficient English text classification using selected Machine Learning Techniques. Alexandria Engineering Journal, 3401–3409.

Sánchez, J. C. (2004). Metodología de la investigación científica y tecnológica. Madrid: Edigrafos S. A.

Jais, I. K. M., Ismail, A. R., & Nisa, S. Q. (2019). Adam optimization algorithm for wide and deep neural network. Knowledge Engineering and Data Science, 2(1), 41-46.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

Liu, R., Wu, T., & Mozafari, B. (2020). Adam with bandit sampling for deep learning. Advances in Neural Information Processing Systems, 33, 5393-5404.

Mathworks. (2022). Access and Preprocess Text Data. https://la.mathworks.com/products/text-analytics.html

Parada, E. L. (2002). Introducción a las políticas públicas. Fondo de cultura económica.

Ramos-Torres, C. A., Vieira, D. F., & Jacobovski, R. (2021). Estrutura institucional na avaliação e monitoramento de políticas públicas: uma análise nos países do MERCOSUL. Revista Brasileira de Administração Científica, 12(2), 232–245. Retrieved from https://doi.org/10.6008/CBPC2179-684X.2021.002.0019

Ravì, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., & Yang, G. Z. (2016). Deep learning for health informatics. IEEE journal of biomedical and health informatics, 21(1), 4-21.

Sahoo, A. K., Pradhan, C., & Das, H. (2020). Performance evaluation of different machine learning methods and deep-learning based convolutional neural network for health decision making. In Nature inspired computing for data science (pp. 201-212). Springer, Cham.

Soto, E. A. (2016). Planeamiento estratégico.

Tito Huamaní, P. L. (2003). Importancia del planeamiento estratégico para el desarrollo organizacional. Gestión En El Tercer Milenio, 5(10), 105–110. https://doi.org/10.15381/gtm.v5i10.9927

Published

2022-07-30

How to Cite

Mercado Rivas, R. Y. ., Cerrón Pérez, J. L. ., & Raraz Tupac Yupanqui, O. C. . (2022). Deep learning applied to the strategic planning of the regional governments of the central macro region to determine the alignment with the policies of the central government. Sapienza: International Journal of Interdisciplinary Studies, 3(4), 69–93. https://doi.org/10.51798/sijis.v3i4.436

Issue

Section

Continuous flow- Articles, Essays, Professional Case Studies