Simulation of a hybrid battery-supercapacitors storage system applied in a photovoltaic system
DOI:
https://doi.org/10.51798/sijis.v3i6.486Keywords:
Photovoltaic energy, Supercapacitors, Hybrid energy storage system, Energy efficiencyAbstract
Due to the limitations presented by batteries and supercapacitors, it is necessary to hybridize batteries and supercapacitors and take of the advantages that they present independently, batteries have a high energy storage ratio and, on the other hand, supercapacitors can provide high levels of energy. power. In this investigation, a simulation was demonstrated in the Matlab/Simulink software of a photovoltaic system of 8 solar panels in series, with a hybrid storage system that had 18 supercapacitors in series with a voltage of 300V and a capacitance of 995F and 1 battery with a nominal voltage of 240V, evaluating, the operating voltage of the photovoltaic array was obtained with the maximum power point tracking (MPPT) algorithm. It is highlighted that the hybridization presented improvements in the storage system, the supercapacitor acts as a buffer, managing to extend the useful life of the battery.
References
Management of Fuel Cell/Battery/Supercapacitor Hybrid Power Sources Using Model Predictive Control. IEEE Transactions on Industrial Informatics, 10(4), 1992-2002. https://doi.org/10.1109/TII.2014.2333873
Cabrane, Z., Ouassaid, M., & Maaroufi, M. (2014). Management and control of storage photovoltaic energy using battery-supercapacitor combination. 2014 Second World Conference on Complex Systems (WCCS), 380-385. https://doi.org/10.1109/ICoCS.2014.7060896
Cabrane, Z., Ouassaid, M., & Maaroufi, M. (2016). Analysis and evaluation of battery-supercapacitor hybrid energy storage system for photovoltaic installation. International Journal of Hydrogen Energy, 41(45), 20897-20907. https://doi.org/10.1016/j.ijhydene.2016.06.141
Chen, Y., Smedley, K., & Brouwer, J. (2006). A Cost-effective Three-phase Grid-connected Inverter with Maximum Power Point Tracking. Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, 2, 995-1000. https://doi.org/10.1109/IAS.2006.256646
Chong, L. W., Wong, Y. W., Rajkumar, R. K., & Isa, D. (2017). Modelling and Simulation of Standalone PV Systems with Battery-supercapacitor Hybrid Energy Storage System for a Rural Household. Energy Procedia, 107, 232-236. https://doi.org/10.1016/j.egypro.2016.12.135
Hepbasli, A. (2008). A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable and Sustainable Energy Reviews, 12(3), 593-661. https://doi.org/10.1016/j.rser.2006.10.001
Joshi, A. S., Dincer, I., & Reddy, B. V. (2009a). Performance analysis of photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 13(8), 1884-1897. https://doi.org/10.1016/j.rser.2009.01.009
Joshi, A. S., Dincer, I., & Reddy, B. V. (2009b). Performance analysis of photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 13(8), 1884-1897. https://doi.org/10.1016/j.rser.2009.01.009
Mikati, M., Santos, M., & Armenta, C. (2012). Modelado y Simulación de un Sistema Conjunto de Energía Solar y Eólica para Analizar su Dependencia de la Red Eléctrica. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(3), 267-281. https://doi.org/10.1016/j.riai.2012.05.010
Rekioua, D., Bensmail, S., & Bettar, N. (2014). Development of hybrid photovoltaic-fuel cell system for stand-alone application. International Journal of Hydrogen Energy, 39(3), 1604-1611. https://doi.org/10.1016/j.ijhydene.2013.03.040
Saitoh, H., Hamada, Y., Kubota, H., Nakamura, M., Ochifuji, K., Yokoyama, S., & Nagano, K. (2003). Field experiments and analyses on a hybrid solar collector. Applied Thermal Engineering, 23(16), 2089-2105. https://doi.org/10.1016/S1359-4311(03)00166-2
Song, Z., Li, J., Hou, J., Hofmann, H., Ouyang, M., & Du, J. (2018). The battery-supercapacitor hybrid energy storage system in electric vehicle applications: A case study. Energy, 154, 433-441. https://doi.org/10.1016/j.energy.2018.04.148
Zhang, X., Huang, Y., & Chen, Z. (2022). A hybrid system integrating photovoltaic module and thermoelectric devices for power and cooling cogeneration. Solar Energy, 239, 350-358. https://doi.org/10.1016/j.solener.2022.05.011
Zhao, C., Yin, H., Yang, Z., & Ma, C. (2015). Equivalent Series Resistance-Based Energy Loss Analysis of a Battery Semiactive Hybrid Energy Storage System. IEEE Transactions on Energy Conversion, 30(3), 1081-1091. https://doi.org/10.1109/TEC.2015.2418818
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Carlos Andrés Loor Vélez, Mauro Enrique Loor Cevallos
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.