Effect of traditional processing of cassava starch production on the concentration of hydrocyanic compounds
DOI:
https://doi.org/10.51798/sijis.v3i7.518Keywords:
hydrocyanic acid, starch, cyanogenic compounds, linamarinAbstract
Cassava is a food containing linamarin and lotaustralin, which are cyanogenic glycosides (CG) that can be enzymatically hydrolyzed and generate hydrocyanic acid (HCN). Under this context, the content of cyanogenic compounds (CCN) in cassava-derived products such as starch was evaluated, as well as the effect of operating conditions on the concentration of these compounds. The HCN concentration was monitored by titration in the different samples. Linamarin was detected by liquid chromatography. In sedimentation, samples were taken every hour for 4 hours and in drying, three temperatures were evaluated, 50, 60 and 80 °C, in times of up to 4 hours. The results indicated that the stage where the greatest amount of HCN is eliminated is pulping, with a reduction of HCN of 63%. In sedimentation, a decrease in HCN concentration was reflected as time elapsed. In drying, the statistical analysis suggested that 60 °C and 3 h of drying would be the appropriate conditions for this stage, bringing the HCN concentration to 0.024 mg. g-1. Finally, the qualitative determination of linamarin supported the numerical results.
References
Aguilar E, Segreda A, Saborío D, Morales J, Chacón M, Rodríguez L, Acuña P, (D.E.P.) Torres S, Gómez Y, (2017). MANUAL DE CULTIVO DE YUCA.
Alarcón F, Dufour MD (2002) Almidón Agrio de Yuca en Colombia Tomo 1: Producción y Recomendaciones.
Alejandro Martínez M. (2020) Química de Productos Naturales: aspectos fundamentales del metabolismo secundario.
Chain (CONTAM) EP on C in the F (2016) Acute health risks related to the presence of cyanogenic glycosides in raw apricot kernels and products derived from raw apricot kernels. EFSA Journal 14: e04424. https://doi.org/10.2903/j.efsa.2016.4424
CODEX. (2013). MANUAL DE PROCEDIMIENTO. Comisión del Codex Alimentarius.
Corozo L, Héctor E, Macías F, et al (2020) MICROPROPAGACIÓN DE DOS VARIEDADES ECUATORIANAS DE YUCA (Manihot esculenta CRANTZ) MICROPROPAGATION OF TWO ECUADORIAN VARIETIES OF YUCA (Manihot esculenta CRANTZ).
Da Silva, J. T., De Paula, C. D., Moreira de Oliveira, T., & Pérez, O. A. (2008). Derivados de la Yuca y Componentes Tóxicos en Brasil. Temas Agrarios, 13(2), 5. https://doi.org/10.21897/rta.v13i2.665.
Gleadow RM, Møller BL (2014) Cyanogenic Glycosides: Synthesis, Physiology, and Phenotypic Plasticity. Annual Review of Plant Biology 65:155–185. https://doi.org/10.1146/annurev-arplant-050213-040027.
Hinostroza García F, Mendoza García M V, Navarrete Párraga M, Muñoz Conforme X (2014) Iniap Instituto Nacional de Investigaciones Agropecuarias Estación Experimental Portoviejo. PROGRAMA HORTICULTURA-YUCA.
J. C. Rivas Gonzalo MGAN (2002) Flavonoides en alimentos vegetales: estructura y actividad antioxidante.
Lean ME (2019) Principles of human nutrition. Medicine (United Kingdom) 47:140–144.
Maria C, Benevides DJ, Souza MV, et al (2011) Fatores antinutricionais em alimentos: revisão Antinutritional factors in foods : a review. Segurança Alimentar e Nutricional 18:67–79.
Martinez CVV, Murillo XSZ, Demera MHD, et al (2021) Almidones de Cáscara de Yuca (Manihot Esculenta) y Papa (Solanum Tuberosum) para Producción de Bioplásticos: Propiedades Mecánicas y Efecto Gelatinizante. Revista Bases de la Ciencia e-ISSN 2588-0764 6:137–152. https://doi.org/10.33936/rev_bas_de_la_ciencia.v6i2.3293
Nambisan B (2011) Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety. Food and Chemical Toxicology 49:690–693. https://doi.org/10.1016/j.fct.2010.10.035.
Okoth MW, Abong GO (2021) The Effects of packaging materials on keeping quality of cassava root - leaf flakes. 2:1–11.
Onojah PK, Odin (2015) Cyanogenic Glycoside in Food Plants.
Panter KE (2018) Cyanogenic Glycoside-Containing Plants, Third Edit. Elsevier Inc.
Parmar A, Sturm B, Hensel O (2017) Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses. Food Security 9:907–927.
Rivadeneyra-Domínguez E, Vázquez-Luna A, Rodríguez-Landa JF, Díaz-Sobac R (2013) Neurotoxic effect of linamarin in rats associated with cassava (Manihot esculenta Crantz) consumption. Food and Chemical Toxicology 59:230–235. https://doi.org/10.1016/j.fct.2013.06.004.
Rosales-Conde JM, Páucar R (2006) USO DE LA CASCARA DE YUCA EN RACIONES PARA CERDOS EN CRECIMIENTO. Folia Amaz 8:105. https://doi.org/10.24841/fa.v8i2.324
Shigaki T (2016) Cassava: The Nature and Uses. In: Encyclopedia of Food and Health. Elsevier Inc., pp 687–693.
Soloneski Sonia, Larramendy ML (2016) Toxicology: new aspects to this scientific conundrum. InTech.
Sornyotha S, Kyu K, Ratanakhanokchai K (2007) Purification and detection of linamarin from cassava root cortex by high performance liquid chromatography. Food Chemistry 104:1750–1754. https://doi.org/10.1016/j.foodchem.2006.10.071.
Tejada CN, Montiel Z, Acevedo D (2016) Aprovechamiento de Cáscaras de Yuca y Ñame para el Tratamiento de Aguas Residuales Contaminadas con Pb (II). Inf tecnol 27:09–20. https://doi.org/10.4067/S0718-07642016000100003
Unión Europea (2019). Modificación y corrección el Reglamento (CE) n.o 1881/2006. Contenido máximo de ácido erúcico y ácido cianhídrico en determinados productos alimenticios.
Zagrobelny M, Møller BL (2011) Cyanogenic glucosides in the biological warfare between plants and insects: The Burnet moth-Birdsfoot trefoil model system. Phytochemistry 72:1585–1592.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Nazre Daniel Murgueitio-Adum , Alex Fernández-Andrade , Ernesto Alonso Rosero-Delgado
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.