Sizing strategies for electrical smart microgrids for rural customers
DOI:
https://doi.org/10.51798/sijis.v4i3.699Keywords:
microgrids, sizing, rural.Abstract
Micro Smart Grids are configured in the panorama of technological areas related to clean energies, as an alternative for the efficient distribution of electric energy. For this purpose, the present study aimed to carry out a documentary analysis of the sizing strategies of smart microgrids for rural users. The research was carried out from the approach of a documentary-bibliographic research. In this framework, the search was carried out in the Internet database of sites specialized in academic information and reliable sources using the descriptors: electric microgrids, strategies, sizing. For the selection of the material under analysis, the following criteria were taken into consideration: pertinence, relevance, language, place of origin, published in indexed journals during the years 2017 to 2021. Based on this, the content analysis of the information found in the literary sources collected was performed. Of the total number of documents used, seven (07) of them were considered for the analysis as they were considered to be the ones that most accurately matched the interests of this study. The results found show that: The integration of distributed energy resources (distributed generation and energy storage), are resulting in a great revolution in generation, transmission, distribution, operation and energy consumption, among others. It is concluded that microgrids become one of the support strategies for the conventional electrical grid that can help in the purpose of undertaking actions for the development of projects aimed at generating a process of allocation or improvement in the supply of electricity in rural localities.
References
Bordón, C., Schenberger, L., Berterame, F., & Chezzi, C. (2018). Estrategias Para la Gestión de una Micro Red. Universidad Tecnológica Nacional (UTN). Argentina. Grupo de Investigación en Modelado, Simulación y Control. https://www.researchgate.net/publication/329372714_Estrategia_para_la_Gestion_de_una_Micro_Red/link/5c056181458515ae5444ad69/download , pp.1-7.
Casado, A. (2012). Dimensionamiento de la Instalación Eléctrica de un Edificio de Oficinas y Almacén de Productos Farmacéuticos. Escuela Técnica Superior de Ingeniero de Minas. Trabajo de titulación. https://oa.upm.es/14984/1/PFC_Alvaro_Casado_Portuondo.pdf, pp.355.
Chae, W., Lee, J., Won, J., Park, J., & Kim, E. (2015). Design and field tests of an inverted based remote MicroGrid on a Korean Island. Energies, vol. 8, no. 8, pp. 8193–8210.
Chauhan, R., Phurailatpam, B., Rajpurohit, B., Gonzalez, F., & Singh, S. (2017). Demand-Side Management System for Autonomous DC Microgrid for Building. Technology and Economics of Smart Grids and Sustainable Energy, vol. 2, n° 1. Singapore, pp.1-11.
De Alaminos, J., Alcor, E., Asensio, M., Bernadó, R., & et al. (2020). Estudio Sobre las Microrredes y su Aplicación a Proyectos de Electrificación de Zonas Rurales. Energías sin fronteras.https://energiasinfronteras.org/wp-content/uploads/2020/09/Estudio-sobre-las-Microrredes-y-su-aplicacion-a-proyectos-de-electrificacion-de-zonas-rurales-aisladas_compressed.pdf.
Deblecker., S. D. (2019). Long-Term Planning of Connected Industrial Microgrids: A Game Theoretical Approach Including Daily Peer-to-Microgrid Exchanges. IEEE Transactions on Smart Grid, 2245- 2256.
Díaz, B. (2019). Dimensionamiento de un Sistema Eléctrico Con Energía Solar y Eólico Para Electrificar el Caserío Chochor en el Distrito de Morrope Departamento de Lambayeque. Universidad Nacional "Pedro Luis Gallo" Lambayeque. Perú. Trabajo de titulación. https://repositorio.unprg.edu.pe/bitstream/handle/20.500.12893/4330/BC-TES-TMP-3152.pdf?sequence=1&isAllowed=y, pp.123.
El-Hana, H., Javaid, M., Shaaban, Y., Shahriar, M., Ramli, M., & Latreche, Y. (2020). Decomposition based multiobjective evolutionary algorithm for PV/Wind/Diesel Hybrid Microgrid System design considering load uncertainty. Energy Reports. Volume 7. https://doi.org/10.1016/j.egyr.2020.11.102. https://www.sciencedirect.com/science/article/pii/S2352484720315274#!, pp.52-69.
Garófalo, F. (2020). SMART GRIDS… O COMO LAS . https://es.linkedin.com/pulse/smart-grids-o-como-las-tics-modernizan-redes-de-energ%C3%ADa-gar%C3%B3falo.
Gómez, V., Hernández , C., & Rivas, E. (2018). Visión General, Caracteristicas y Funcionalidades de la Red Eléctrica Inteligente (Smart Grid). Información tecnológica. Vol.29. Núm.2. http://dx.doi.org/10.4067/S0718-07642018000200089, pp.89-102 .
Grupo de Investigación Xué. (2020). Aspectos Generales de las Redes Eléctricas Inteligentes en Colombia. Semillero de Investigación Barión. Universidad Distrital Francisco José de Caldas.Región Administrativa y de Planeación Especial RAP-E. Colombia, pp.133.
Hernández, R., Fernández, C., & Baptista, P. (2014). Metodología de la Investigación. México: Editorial Mc Graw Hill.
Kharrich, M., Salah, K., Alghamdi, A., Eid, A., Mosaad, M., Akherraz, M., y otros. (2021). Optimal Design of an Isolated Hybrid Microgrid for Enhanced Deployment of Renewable Energy Sources in Saudi Arabia. Sustainability, 13(9), 4708; https://doi.org/10.3390/su13094708.
Kobus, C., Klaassen, E., Mugge, R., & Schoormans, J. (2015). A real-life assessment on the effect of smart appliances for shifting households’ electricity demand. Applied Energy, 147, pp.335–343 .
Liang, H., Liu, H., & Fan, M. (2012). Optimal Planning of Microgrid applied in Remote Rural Area. CIGRE.
Llano, M. (2015). La Micro-Red inteligente: una ciudad eficiente, en miniatura. Revista Universitas Científica. https://www.upb.edu.co/es/documentos/doc-ciudadeficienteminiatura-inv-1464100344537.pdf, pp.24-29.
Mendieta, D., & Escribano, J. (2015). Electricidad, Desarrollo Rural y Buen Vivir. III Simposio Internacional Historia de la electrificación. Estrategias y cambios en el territorio y la sociedad. https://www.ub.edu/geocrit/iii-mexico/mendietaescribano.pdf, pp.1-16.
Omotayo, J., Ramli , M., & Al-Turki, Y. (2019). Techno-Economic and Sensitivity Analyses for an Optimal Hybrid Power System Which Is Adaptable and Effective for Rural Electrification: A Case Study of Nigeria. Sustainabilit, 11(18), 4959; https://doi.org/10.3390/su11184959.
Paredes, L., Serrano, B., & Molina, M. (2019). Microrredes: Una Revisión Metodológica en el Contexto Actual de los Sistemas Eléctricos. Eléctrica; Nº 49. https://ri.conicet.gov.ar/bitstream/handle/11336/125005/CONICET_Digital_Nro.226ffd5a-9bca-4858-a78f-3267ed249fdc_A.pdf?sequence=2&isAllowed=y, pp.9-18.
Pascual de Vega, S. (2018). Micro Redes y Redes Inteligentes. Universidad de Valladolid. Trabajo de titulación, pp.169.
Ramlia, M., Bouchekara, H., & Alghamdia, a. (2018). Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm. Renewable Energy. Volume 121. https://doi.org/10.1016/j.renene.2018.01.058. Elsevier Ltd, pp.400-411.
Rodríguez, R., Osma, G., & Ordóñez, G. (2017). Retos de la planificación energética de micro-redes en regiones rurales remotas con cargas dispersas. SICEL, pp.1-8.
Sánchez, A., Torres, E., & Kalid, R. (2015). Renewable energy generation for the rural electrification of isolated communities in the Amazon Region. Renew. Sustain. Energy Rev., vol. 49, pp. 278–290.
Servan Socola, J. (2014). Análisis técnico-económico de un sistema híbrido de baja potencia eólico solar conectado a la red. Universidad de Piura. Perú. Trabajo de titulación. https://pirhua.udep.edu.pe/handle/11042/2038
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 José Enrique Escobar-Sandoval, Gabriel Pico Mera
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.