Economic valuation of carbon sequestration in Quito’s Metropolitan Park using Sentinel-2 and neural networks
DOI:
https://doi.org/10.51798/sijis.v5i3.751Keywords:
Carbon credits, remote sensing, Sentinel-2, neural networks, forest biomass, carbon estimation.Abstract
This study introduces an innovative method for assessing the economic value of carbon stored by the urban park forest in Quito, Ecuador. The method uses Sentinel-2 remote sensing data and advanced deep learning techniques. A large forest study area was chosen, and detailed field measurements were taken to gather biomass and carbon data. Sentinel-2 satellite images were processed to correct for radiation and atmospheric conditions, and vegetation indices such as NDVI and EVI were calculated. To model forest biomass, a convolutional neural network (CNN) was created and trained using Sentinel-2 spectral bands and vegetation indices. The model was validated with independent field data and demonstrated high accuracy in estimating biomass and carbon, as indicated by evaluation metrics like RMSE and R². The findings include detailed maps showing the spatial distribution of biomass and carbon in the study area, which can be a valuable tool for forest management and the implementation of policies for valuing stored carbon. This approach combines the high resolution of Sentinel-2 data with the predictive power of neural networks, providing a robust and scalable method for estimating carbon across large forest areas. The study's conclusions emphasize the feasibility and accuracy of this approach and its potential for application in various forestry and geographical contexts.
References
Aguirre, N., Erazo, A., & Granda, J. (2017). Posibilidades de comercialización de bonos de carbono del bosque seco de la provincia de Loja, Ecuador. Bosques latitud cero, 7(2), 98-115.
Augusto, L. M., Andiappan, V., Goncalves, J., Jensen, M., Ribeiro, F. H., & Pereira, E. J. (2017). Estimation of carbon stock using Sentinel-2 imagery in a tropical dry forest. Remote Sensing, 9(11), 1106. https://academic.oup.com/forestry/article/96/1/104/6695523
Beck, M., Rivers, N., & Yonezawa, H. (2016). A rural myth? Sources and implications of the perceived unfairness of carbon taxes in rural communities. Ecological Economics, 124, 124-134. https://doi.org/10.1016/j.ecolecon.2016.01.017
Bösch, M., Elsasser, P., Rock, J., Rüter, S., Weimar, H., & Dieter, M. (2017). Costs and carbon sequestration potential of alternative forest management measures in Germany. Forest Policy and Economics, 78, 88-97. https://doi.org/10.1016/j.forpol.2017.01.005
Brown, S., & Lugo, A. E. (2008). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 34(4), 881-902.
Calle, E. L. P., Ordóñez, L. B. T., & Rodríguez, E. C. (2024). Una revisión de literatura sobre el mercado de Bonos de Carbono. Uda akadem, (13), 227-258.
Cancino Cancino, J. O. (2012). Dendrometría básica. Universidad de Concepción. Facultad de Ciencias Forestales. Departamento Manejo de Bosques y Medio Ambiente, (pp, 9-17) http://repositorio.udec.cl/bitstream/11594/407/2/Dendrometria_Basica
Canu, D. M., Ghermandi, A., Nunes, P. A., Lazzari, P., Cossarini, G., & Solidoro, C. (2015). Estimating the value of carbon sequestration ecosystem services in the Mediterranean Sea: An ecological economics approach. Global Environmental Change, 32, 87-95. https://doi.org/10.1016/j.gloenvcha.2015.02.008
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., ... & Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177-3190.
Choi, A. S., Gössling, S., & Ritchie, B. W. (2018). Flying with climate liability? Economic valuation of voluntary carbon offsets using forced choices. Transportation Research Part D: Transport and Environment, 62, 225-235. https://doi.org/10.1016/j.trd.2018.02.018
Cruz, M. C. D. (2016). Bonos de carbono: un instrumento en el sistema financiero internacional. Libre Empresa, 13(1), 11-33.
De Oca-Cano, E. M., Salvador-García, Á., Nájera-Luna, J. A., Corral-Rivas, S., y González, J. M. (2020). Ecuaciones alométricas para estimar biomasa y carbono en Trichospermum mexicanum (DC.) Baill. Colombia forestal, 23(2). https://doi.org/10.14483/2256201X.15836
ESA. (2024). Sentinel-2. Recuperado de https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2
Estrada Zúñiga, A. C., Cárdenas Rodriguez, J., Bejar Saya, J. V., & Ñaupari Vásquez, J. (2022). Estimación de la biomasa de una comunidad vegetal altoandina utilizando imágenes multiespectrales adquiridas con sensores remotos UAV y modelos de Regresión Lineal Múltiple, Máquina de Vectores Soporte y Bosques Aleatorios. Scientia Agropecuaria, 13(3), 301-310.
Gallant, K., Withey, P., Risk, D., van Kooten, G. C., & Spafford, L. (2020). Measurement and economic valuation of carbon sequestration in Nova Scotian wetlands. Ecological Economics, 171, 106619. https://doi.org/10.1016/j.ecolecon.2020.106619
Gomez-Baggethun, E., de Groot, R., Lomas, P. L., & Montes, C. (2010). The history of ecosystem services in economic theory and practice: From early notions to markets and payment schemes. Ecological Economics, 69(6), 1209-1218.
Guitart, A. B., & Rodriguez, L. E. (2010). Private valuation of carbon sequestration in forest plantations. Ecological Economics, 69(3), 451-458. https://doi.org/10.1016/j.ecolecon.2009.10.005
Johnson, K., & Brown, M. (2019). Advances in remote sensing for forest biomass estimation. Remote Sensing of Environment, 231, 111249.
Jones, T. G., Page, S. E., & Rieley, J. O. (2018). Tropical peatland carbon storage linked to global climate, rainfall, and carbon dioxide levels. Global Biogeochemical Cycles, 32(3), 448-461.
Koch, B. (2013). La teledetección como apoyo a los inventarios forestales nacionales EFN. Antología de conocimiento para la evaluación de los recursos forestales nacionales.[Online Document] Available in: http://www.fao.org/fileadmin/user_upload/national_forest_assessment/images/PDFs/Spanish/KR2_ES__8_. pdf.
Kremen, C., Niles, J. O., Dalton, M. G., Daily, G. C., Ehrlich, P. R., Fay, J. P., ... & Thorne, J. H. (2000). Economic incentives for rain forest conservation across scales. Science, 288(5472), 1828-1832.
Lechuga García, L., & Godínez Enciso, J. A. (2008). El conocimiento productivo: su relevancia para el desarrollo empresarial. Tiempo económico, 3(9), 5-16.
Li, W., Fu, H., & Wen, X. (2017). Integrating remote sensing and machine learning for improved forest biomass estimation. Journal of Environmental Management, 200, 268-280.
Liu, Z., Hu, B., Zhao, Y., Lang, L., Guo, H., Florence, K., & Zhang, S. (2020). Research on intelligent decision of low carbon supply chain based on carbon tax constraints in human-driven edge computing. IEEE Access, 8, 48264-48273. https://doi.org/10.1109/ACCESS.2020.2978911
Lobos, G., Vallejos, O., Caroca, C., & Marchant, C. (2005). El Mercado de los Bonos de Carbono (“bonos verdes”): Una Revisión”. RIALT. Revista Interamericana de Ambiente y Turismo, 1(1).
López, D. A. (2015). Determinación del costo asociado a la pérdida de carbono orgánico del suelo en sistemas agropecuarios del partido de Pergamino.
Maldonado, O. A. O. (2016). Bonos de carbono: desarrollo conceptual y aproximación crítica. Misión Jurídica, 9(11), 289-297.
Medina, C. E., Medina, Y. K., & Bocardo, E. F. (2020). Economic valuation of carbon capture and storage in the puna dry of southwestern Peru. Revista Bosque, 41(2), 165-172. https://doi.org/10.4067/S0717-92002020000200165
Mirici, M. E., & Berberoglu, S. (2024). Terrestrial carbon dynamics and economic valuation of ecosystem service for land use management in the Mediterranean region. Ecological Informatics, 81, 102570. https://doi.org/10.1016/j.ecoinf.2024.102570
Montiel González, R., Bolaños González, M. A., Macedo Cruz, A., Rodríguez González, A., & López Pérez, A. (2022). Clasificación de uso del suelo y vegetación con redes neuronales convolucionales. Revista mexicana de ciencias forestales, 13(74), 97-119
Moreno, A., Soria, E., García, J., Martín Guerrero, J. D., & Belda Esplugues, F. (2009). Métodos predictivos de precipitación utilizando datos de la cubierta vegetal mediante teledetección.
Muñoz Tello, M. E., y Vásquez Córdova, E. G. (2020). Estimaciones del potencial de captura de carbono en los parques urbanos y emisiones de CO2 vehicular en Cuenca, Ecuador (Engineering Thesis, Universidad Politécnica Salesiana, Ecuador). https://dspace.ups.edu.ec/handle/123456789/18390
Naime, J., Mora, F., Sánchez-Martínez, M., Arreola, F., & Balvanera, P. (2020). Economic valuation of ecosystem services from secondary tropical forests: Trade-offs and implications for policy making. Forest Ecology and Management, 473, 118294. https://doi.org/10.1016/j.foreco.2020.118294
Nuñez, X. L. C., Amores, L. E. M., & Zurita, J. S. (2023). Uso de la Teledetección para Calcular el Carbono Secuestrado por el Bosque Municipal Protegido-Quito. Ciencia Latina Revista Científica Multidisciplinar, 7(6), 2333-2346.
Nuñez, X. L. C., Amores, L. E. M., Zurita, J. V. S., & Hernandez, O. V. (2024). Calculation of carbon sequestered through remote sensing in a metropolitan park in the city of Quito, Ecuador. Sapienza: International Journal of Interdisciplinary Studies, 5(1), e24021-e24021.
Pache, R. G., Abrudan, I. V., & Niță, M. D. (2020). Economic valuation of carbon storage and sequestration in Retezat National Park, Romania. Forests, 12(1), 43. https://doi.org/10.3390/f12010043
Pacheco Gutiérrez, C. A. (2020). Estimación del almacenamiento y retención de Dióxido de carbono en el arbolado urbano público de la zona de Achumani de la ciudad de La Paz a través de una aplicación móvil. Fides et Ratio-Revista de Difusión cultural y científica de la Universidad La Salle en Bolivia, 19(19), 153-174. http://www.scielo.org.bo/pdf/rfer/v19n19/v19n19_a08.pdf
Perea-Ardila, MA, Andrade-Castañeda, HJ y Segura-Madrigal, MA (2021). Estimación de biomasa aérea y carbono con Teledetección en bosques alto-Andinos de Boyacá, Colombia. Estudio de caso: Santuario de Fauna y Flora Iguaque. Revista cartográfica , (102), 99-123.
Peters-Stanley, M., Hamilton, K., & Yin, D. (2012). State of the voluntary carbon markets 2012: Developing dimension. Ecosystem Marketplace & Bloomberg New Energy Finance.
Quillupangui Nasimba, C. D. (2019). Determinación del comportamiento espectral de coberturas y usos de la tierra de la subcuenca del río San Pedro (Engineering Thesis, Quito UCE). http://www.dspace.uce.edu.ec/handle/25000/19802
Sastre, L. F. S., Marcos-Robles, J. L., Llorente, E. H., Navarro, S. H., & Prieto, P. C. (2016). Aplicación de tecnologías de teledetección al estudio de biomasa forestal/Remote sensing technologies applied to forestry biomass studies. Revista Ibérica de Sistemas e Tecnologias de Informação, (19), 61.
Seppänen, P. (2003). Costo de la captura de carbono en plantaciones de eucalipto en el trópico. Foresta Veracruzana, 5(1), 1-6.
Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., ... & Tubiello, F. N. (2020). Agriculture, forestry and other land use (AFOLU). In Climate Change 2020: Mitigation of Climate Change (pp. 811-922). Cambridge University Press.
Stephan, B., & Paterson, M. (2012). The politics of carbon markets: an introduction. Environmental Politics, 21(4), 545-562. https://doi.org/10.1080/09644016.2012.688353
Valverde Quiroz, J. C. (2017). Determinación de la ecuación de biomasa aérea de Eucalyptus globulus de plantaciones en cercos vivos, distrito de Huertas, Junín. (Engineering Thesis, Lima, Universidad Nacional Agraria la Molina,) http://repositorio.lamolina.edu.pe/handle/UNALM/2701
Von Avenarius, A., Devaraja, T. S., & Kiesel, R. (2018). An empirical comparison of carbon credit projects under the clean development mechanism and verified carbon standard. Climate, 6(2), 49. https://doi.org/10.3390/cli6020049
Van der Gaast, W., Sikkema, R., & Vohrer, M. (2018). The contribution of forest carbon credit projects to addressing the climate change challenge. Climate Policy, 18(1), 42-48. https://doi.org/10.1080/14693062.2016.1242056
Watson, R. T., Noble, I. R., Bolin, B., Ravindranath, N. H., Verardo, D. J., & Dokken, D. J. (Eds.). (2019). Land Use, Land-Use Change, and Forestry: A Special Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press.
World Bank. 2024. State and Trends of Carbon Pricing 2024. © Washington, DC: World Bank. http://hdl.handle.net/10986/41544 License: CC BY 3.0 IGO.”
Zurita, J. V. S., Garrido, R. A. S., Solano, M. P. S., & Nuñez, X. L. C. (2024). Comparative analysis between spectral indices obtained in the Guangüiltagua metropolitan park in Quito–Ecuador, using remote sensing. Sapienza: International Journal of Interdisciplinary Studies, 5(1), e24011. https://doi.org/10.51798/sijis.v5i1.732
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jaime Vladimir Sancho Zurita, Ximena Luz Crespo Nuñez, Robert Augusto Samaniego Garrido, Mónica Paola Sancho Solano, Gonzalo Napoleón Cadena Echeverria
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.