Integration of omics technologies for the identification of predictive biomarkers in type 2 diabetes: a comprehensive analysis of recent literature

Authors

DOI:

https://doi.org/10.51798/sijis.v5i2.754

Keywords:

Omics Technologies, Transcriptomics, Type 2 Diabetes Mellitus, Biomarker Discovery.

Abstract

Background. Omics technologies, such as genomics, proteomics, metabolomics, and Transcriptomics are being used for identifying biomarkers. These biomarkers are unraveling the molecular mechanisms underlying type 2 diabetes mellitus (T2DM), which can help to promote more personalized treatment strategies and advance our understanding of disease pathogenesis. Omics approaches enable the examination of genetic, protein, metabolic, and gene expression profiles more comprehensively while offering insights into T2DM risk, progression, and potential therapeutic targets. Methods: This review follows a systematic methodology, aimed at evaluating omics technology’s role in diabetes research. Utilizing literature searches, we got an initial pool of 257 studies with a rigorous selection process and narrowed the selection to 10 high-quality studies. Our methodology approach ensured the inclusion of relevant, peer-reviewed articles that contribute significantly to understanding the application of omics technologies in predicting biomarkers for type 2 diabetes. Results: The systematic review identifies ten high-quality studies illuminating substantial omics technology’s role in advancing our understanding of type 2 diabetes (T2D). Collectively, these studies demonstrate how genomics, proteomics, metagenomics, metabolomics, and Transcriptomics have uncovered novel biomarkers and molecular pathways for T2D. Our findings underscore all the omics potentials specifically for developing predictive biomarkers, enhancing diagnostics, and tailoring personalized treatment strategies. Genetic variations, metabolic alterations, and protein and RNA expression profiles were highlighted as key areas where omics technologies offer insights into the pathophysiology and management of T2D.

Author Biographies

Jefferson Vicente Urvina Muñoz, Universidad de Guayaquil, Ecuador 

Physician and Graduate Researcher, Universidad de Guayaquil, Ecuador 

Erika Alejandra Zúñiga San Lucas, Universidad San Francisco de Quito, Ecuador

Physician and Graduate Researcher, Universidad San Francisco de Quito, Ecuador

Ney Asdrubal Macias Valdez, Universidad Laica Eloy Alfaro de Manabí, Ecuador

Physician and Graduate Researcher, Universidad Laica Eloy Alfaro de Manabí, Ecuador

Jean Pierre Villafuerte, Universidad de Cuenca, Ecuador

Physician and Graduate Researcher Universidad de Cuenca, Ecuador

Cristhian Andrés Arroba Riofrio, Universidad Nacional de Chimborazo, Ecuador

Graduate Researcher, Universidad Nacional de Chimborazo, Ecuador

References

Afsharmanesh, M. R., Mohammadi, Z., Mansourian, A. R., & Jafari, S. M. (2023). A Review of micro RNAs changes in T2DM in animals and humans. Journal of Diabetes, 15(8), 649–664. https://doi.org/10.1111/1753-0407.13431

Al‐Rawi, N. H., Al-Marzooq, F., Alnuaimi, A. S., Hachim, M. Y., & Hamoudi, R. (2020). Salivary microRNA 155, 146a/b and 203: A pilot study for potentially non-invasive diagnostic biomarkers of periodontitis and diabetes mellitus. PLOS ONE, 15(8), e0237004. https://doi.org/10.1371/journal.pone.0237004

Bakır-Güngör, B., Bulut, O., Jabeer, A., Nalbantoğlu, U., & Yousef, M. (2021). Discovering potential taxonomic biomarkers of type 2 diabetes from human gut microbiota via different feature selection methods. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.628426

Bell, L., Meydan, C., Kim, J., Foox, J., Butler, D., Mason, C. E., Shapira, S., Noursadeghi, M., & Pollara, G. (2021). Transcriptional response modules characterize IL-1β and IL-6 activity in COVID-19. iScience, 24(1), 101896. https://doi.org/10.1016/j.isci.2020.101896

Bury, J. J., Chambers, A., Heath, P. R., Ince, P. G., Shaw, P. J., Matthews, F. E., Brayne, C., Simpson, J. E., & Wharton, S. B. (2021). Type 2 diabetes mellitus-associated transcriptome alterations in cortical neurones and associated neurovascular unit cells in the ageing brain. Acta Neuropathologica Communications, 9(1). https://doi.org/10.1186/s40478-020-01109-y

Chen, Y., Li, Z., Hu, S., Zhang, J., Wu, J., Shao, N., Bo, X., Ni, M., & Ying, X. (2017). Gut metagenomes of type 2 diabetic patients have characteristic single-nucleotide polymorphism distribution in Bacteroides coprocola. Microbiome, 5(1). https://doi.org/10.1186/s40168-017-0232-3

Dai, X., & Shen, L. (2022). Advances and Trends in Omics Technology Development. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.911861

Dayeh, T., Tuomi, T., Almgren, P., Perfilyev, A., Jansson, P. A., De Mello, V. D., Pihlajamäki, J., Vaag, A., Groop, L., Nilsson, E., & Ling, C. (2016). DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk. Epigenetics, 11(7), 482–488. https://doi.org/10.1080/15592294.2016.1178418

Dilworth, L., Facey, A., & Omoruyi, F. O. (2021). Diabetes mellitus and its metabolic complications: the role of adipose tissues. International Journal of Molecular Sciences, 22(14), 7644. https://doi.org/10.3390/ijms22147644

Duan, X., Chen, Z., Xia, C., Zhong, R., Liu, L., & Long, L. (2023). Increased levels of urine volatile organic compounds are associated with diabetes risk and impaired glucose homeostasis. The Journal of Clinical Endocrinology & Metabolism, 109(2), e531–e542. https://doi.org/10.1210/clinem/dgad584

Fadheel, H. K., Kaftan, A. N., Naser, F. H., Hussain, M. K., Algenabi, A. H. A., Mohammad, H. J., & Al-Kashwan, T. A. (2022). Association of CDKN2A/B gene polymorphisms (rs10811661 and rs2383208) with type 2 diabetes mellitus in a sample of Iraqi population. Egyptian Journal of Medical Human Genetics, 23(1). https://doi.org/10.1186/s43042-022-00283-z

Gan, W., Ramachandran, V., Lim, C. S. Y., & Koh, R. Y. (2019). Omics-based biomarkers in the diagnosis of diabetes. Journal of Basic and Clinical Physiology and Pharmacology, 31(2). https://doi.org/10.1515/jbcpp-2019-0120

Goyal, R. (2023, June 23). Type 2 diabetes. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK513253/

Grieco, G. E., Besharat, Z. M., Licata, G., Fignani, D., Brusco, N., Nigi, L., Formichi, C., Pò, A., Sabato, C., Dardano, A., Natali, A., Dotta, F., Sebastiani, G., & Ferretti, E. (2022). Circulating microRNAs as clinically useful biomarkers for Type 2 Diabetes Mellitus: miRNomics from bench to bedside. Translational Research, 247, 137–157. https://doi.org/10.1016/j.trsl.2022.03.008

Kong, Y., Sharma, R., Nwosu, B. U., & Alonso, L. (2016). Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia, 59(8), 1579–1593. https://doi.org/10.1007/s00125-016-3967-7

Kupai, K., Várkonyi, T., Török, S., Gáti, V., Czimmerer, Z., Puskás, L. G., & Szebeni, G. J. (2022). Recent progress in the diagnosis and management of Type 2 diabetes mellitus in the era of COVID-19 and Single-cell Multi-Omics technologies. Life, 12(8), 1205. https://doi.org/10.3390/life12081205

Lee, C., Chen, C., Hsu, C., Chen, Y., Chen, C., Yang, K., Hung, M., & Wu, I. (2023). Urinary microRNA in Diabetic kidney Disease: A literature review. Medicina-lithuania, 59(2), 354. https://doi.org/10.3390/medicina59020354

Migała, M., Chałubińska-Fendler, J., & Zielińska, M. (2022). 1,5-Anhydroglucitol as a marker of acute hyperglycemia in cardiovascular events. The Review of Diabetic Studies, 18(2), 68–75. https://doi.org/10.1900/rds.2022.18.68

Padilla-Martínez, F., Wojciechowska, G., Szczerbiński, Ł., & Krętowski, A. (2021). Circulating nucleic Acid-Based biomarkers of type 2 diabetes. International Journal of Molecular Sciences, 23(1), 295. https://doi.org/10.3390/ijms23010295

Prasad, R. B., & Groop, L. (2015). Genetics of Type 2 Diabetes—Pitfalls and Possibilities. Genes, 6(1), 87–123. https://doi.org/10.3390/genes6010087

Qiu, S., Cai, Y., Ye, H., Lin, C., Xie, Y., Tang, S., & Zhang, A. (2023). Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduction and Targeted Therapy, 8(1). https://doi.org/10.1038/s41392-023-01399-3

Rabby, M. G., Rahman, M. H., Islam, M. N., Kamal, M. M., Biswas, M., Bonny, M., & Hasan, M. M. (2023). In silico identification and functional prediction of differentially expressed genes in South Asian populations associated with type 2 diabetes. PLOS ONE, 18(12), e0294399. https://doi.org/10.1371/journal.pone.0294399

Siegl, F., Večeřa, M., Roskova, I., Smrčka, M., Jancalek, R., Kazda, T., Slabý, O., & Šáňa, J. (2022). The significance of MicroRNAs in the molecular pathology of brain metastases. Cancers, 14(14), 3386. https://doi.org/10.3390/cancers14143386

Tabackman, L. (2023, April 7). Is type 2 diabetes genetic? Healthline. https://www.healthline.com/health/type-2-diabetes/genetics#responsible-genes

Tam, Z. Y., Ng, S. P., Tan, L., Lin, C., Rothenbacher, D., Klenk, J., & Boehm, B. O. (2017). Metabolite profiling in identifying metabolic biomarkers in older people with late-onset type 2 diabetes mellitus. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-01735-y

Villa Solís, L. F., Lascano Sánchez , A. del R., Ortiz Martinez, C. A., Viteri López, A. M., & Curichumbi Guama, M. R. (2023). Nursing intervention in the care of patients with diabetes mellitus. Sapienza: International Journal of Interdisciplinary Studies, 4(4), e23061. https://doi.org/10.51798/sijis.v4i4.718

World Health Organization: WHO & World Health Organization: WHO. (2023, April 5). Diabetes. https://www.who.int/news-room/fact-sheets/detail/diabetes

Yahaya, T., Salisu, T., Abdulrahman, Y., & Umar, A. (2020). Update on the genetic and epigenetic etiology of gestational diabetes mellitus: a review. Egyptian Journal of Medical Human Genetics, 21(1). https://doi.org/10.1186/s43042-020-00054-8

Tao, W., Lin, P., Liu, S., Xie, Q., Ke, S., & Zeng, X. (2017). 1-Butyl-3-Methylimidazolium tetrafluoroborate film as a highly selective sensing material for Non-Invasive detection of acetone using a quartz crystal microbalance. Sensors, 17(12), 194. https://doi.org/10.3390/s17010194

Rodríguez-Torres, M., Altúzar, V., Mendoza‐Barrera, C., Beltrán-Pérez, G., Castillo-Mixcóatl, J., & Muñoz-Aguirre, S. (2023). Acetone detection and classification as biomarker of diabetes mellitus using a quartz crystal microbalance gas sensor array. Sensors, 23(24), 9823. https://doi.org/10.3390/s23249823

Wang, W., Zhou, W., Wang, S., Huang, J., Le, Y., Nie, S., Wang, W., & Guo, Q. (2021). Accuracy of breath test for diabetes mellitus diagnosis: a systematic review and meta-analysis. BMJ open diabetes research & care, 9(1), e002174. https://doi.org/10.1136/bmjdrc-2021-002174

Downloads

Published

2024-04-13

How to Cite

Urvina Muñoz, J. V., Zúñiga San Lucas, E. A., Macias Valdez, N. A., Villafuerte, J. P., & Arroba Riofrio, C. A. (2024). Integration of omics technologies for the identification of predictive biomarkers in type 2 diabetes: a comprehensive analysis of recent literature. Sapienza: International Journal of Interdisciplinary Studies, 5(2), e24027. https://doi.org/10.51798/sijis.v5i2.754

Issue

Section

Health Sciences - Original Articles