Integration of omics technologies for the identification of predictive biomarkers in type 2 diabetes: a comprehensive analysis of recent literature
DOI:
https://doi.org/10.51798/sijis.v5i2.754Keywords:
Omics Technologies, Transcriptomics, Type 2 Diabetes Mellitus, Biomarker Discovery.Abstract
Background. Omics technologies, such as genomics, proteomics, metabolomics, and Transcriptomics are being used for identifying biomarkers. These biomarkers are unraveling the molecular mechanisms underlying type 2 diabetes mellitus (T2DM), which can help to promote more personalized treatment strategies and advance our understanding of disease pathogenesis. Omics approaches enable the examination of genetic, protein, metabolic, and gene expression profiles more comprehensively while offering insights into T2DM risk, progression, and potential therapeutic targets. Methods: This review follows a systematic methodology, aimed at evaluating omics technology’s role in diabetes research. Utilizing literature searches, we got an initial pool of 257 studies with a rigorous selection process and narrowed the selection to 10 high-quality studies. Our methodology approach ensured the inclusion of relevant, peer-reviewed articles that contribute significantly to understanding the application of omics technologies in predicting biomarkers for type 2 diabetes. Results: The systematic review identifies ten high-quality studies illuminating substantial omics technology’s role in advancing our understanding of type 2 diabetes (T2D). Collectively, these studies demonstrate how genomics, proteomics, metagenomics, metabolomics, and Transcriptomics have uncovered novel biomarkers and molecular pathways for T2D. Our findings underscore all the omics potentials specifically for developing predictive biomarkers, enhancing diagnostics, and tailoring personalized treatment strategies. Genetic variations, metabolic alterations, and protein and RNA expression profiles were highlighted as key areas where omics technologies offer insights into the pathophysiology and management of T2D.
References
Afsharmanesh, M. R., Mohammadi, Z., Mansourian, A. R., & Jafari, S. M. (2023). A Review of micro RNAs changes in T2DM in animals and humans. Journal of Diabetes, 15(8), 649–664. https://doi.org/10.1111/1753-0407.13431
Al‐Rawi, N. H., Al-Marzooq, F., Alnuaimi, A. S., Hachim, M. Y., & Hamoudi, R. (2020). Salivary microRNA 155, 146a/b and 203: A pilot study for potentially non-invasive diagnostic biomarkers of periodontitis and diabetes mellitus. PLOS ONE, 15(8), e0237004. https://doi.org/10.1371/journal.pone.0237004
Bakır-Güngör, B., Bulut, O., Jabeer, A., Nalbantoğlu, U., & Yousef, M. (2021). Discovering potential taxonomic biomarkers of type 2 diabetes from human gut microbiota via different feature selection methods. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.628426
Bell, L., Meydan, C., Kim, J., Foox, J., Butler, D., Mason, C. E., Shapira, S., Noursadeghi, M., & Pollara, G. (2021). Transcriptional response modules characterize IL-1β and IL-6 activity in COVID-19. iScience, 24(1), 101896. https://doi.org/10.1016/j.isci.2020.101896
Bury, J. J., Chambers, A., Heath, P. R., Ince, P. G., Shaw, P. J., Matthews, F. E., Brayne, C., Simpson, J. E., & Wharton, S. B. (2021). Type 2 diabetes mellitus-associated transcriptome alterations in cortical neurones and associated neurovascular unit cells in the ageing brain. Acta Neuropathologica Communications, 9(1). https://doi.org/10.1186/s40478-020-01109-y
Chen, Y., Li, Z., Hu, S., Zhang, J., Wu, J., Shao, N., Bo, X., Ni, M., & Ying, X. (2017). Gut metagenomes of type 2 diabetic patients have characteristic single-nucleotide polymorphism distribution in Bacteroides coprocola. Microbiome, 5(1). https://doi.org/10.1186/s40168-017-0232-3
Dai, X., & Shen, L. (2022). Advances and Trends in Omics Technology Development. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.911861
Dayeh, T., Tuomi, T., Almgren, P., Perfilyev, A., Jansson, P. A., De Mello, V. D., Pihlajamäki, J., Vaag, A., Groop, L., Nilsson, E., & Ling, C. (2016). DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk. Epigenetics, 11(7), 482–488. https://doi.org/10.1080/15592294.2016.1178418
Dilworth, L., Facey, A., & Omoruyi, F. O. (2021). Diabetes mellitus and its metabolic complications: the role of adipose tissues. International Journal of Molecular Sciences, 22(14), 7644. https://doi.org/10.3390/ijms22147644
Duan, X., Chen, Z., Xia, C., Zhong, R., Liu, L., & Long, L. (2023). Increased levels of urine volatile organic compounds are associated with diabetes risk and impaired glucose homeostasis. The Journal of Clinical Endocrinology & Metabolism, 109(2), e531–e542. https://doi.org/10.1210/clinem/dgad584
Fadheel, H. K., Kaftan, A. N., Naser, F. H., Hussain, M. K., Algenabi, A. H. A., Mohammad, H. J., & Al-Kashwan, T. A. (2022). Association of CDKN2A/B gene polymorphisms (rs10811661 and rs2383208) with type 2 diabetes mellitus in a sample of Iraqi population. Egyptian Journal of Medical Human Genetics, 23(1). https://doi.org/10.1186/s43042-022-00283-z
Gan, W., Ramachandran, V., Lim, C. S. Y., & Koh, R. Y. (2019). Omics-based biomarkers in the diagnosis of diabetes. Journal of Basic and Clinical Physiology and Pharmacology, 31(2). https://doi.org/10.1515/jbcpp-2019-0120
Goyal, R. (2023, June 23). Type 2 diabetes. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK513253/
Grieco, G. E., Besharat, Z. M., Licata, G., Fignani, D., Brusco, N., Nigi, L., Formichi, C., Pò, A., Sabato, C., Dardano, A., Natali, A., Dotta, F., Sebastiani, G., & Ferretti, E. (2022). Circulating microRNAs as clinically useful biomarkers for Type 2 Diabetes Mellitus: miRNomics from bench to bedside. Translational Research, 247, 137–157. https://doi.org/10.1016/j.trsl.2022.03.008
Kong, Y., Sharma, R., Nwosu, B. U., & Alonso, L. (2016). Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia, 59(8), 1579–1593. https://doi.org/10.1007/s00125-016-3967-7
Kupai, K., Várkonyi, T., Török, S., Gáti, V., Czimmerer, Z., Puskás, L. G., & Szebeni, G. J. (2022). Recent progress in the diagnosis and management of Type 2 diabetes mellitus in the era of COVID-19 and Single-cell Multi-Omics technologies. Life, 12(8), 1205. https://doi.org/10.3390/life12081205
Lee, C., Chen, C., Hsu, C., Chen, Y., Chen, C., Yang, K., Hung, M., & Wu, I. (2023). Urinary microRNA in Diabetic kidney Disease: A literature review. Medicina-lithuania, 59(2), 354. https://doi.org/10.3390/medicina59020354
Migała, M., Chałubińska-Fendler, J., & Zielińska, M. (2022). 1,5-Anhydroglucitol as a marker of acute hyperglycemia in cardiovascular events. The Review of Diabetic Studies, 18(2), 68–75. https://doi.org/10.1900/rds.2022.18.68
Padilla-Martínez, F., Wojciechowska, G., Szczerbiński, Ł., & Krętowski, A. (2021). Circulating nucleic Acid-Based biomarkers of type 2 diabetes. International Journal of Molecular Sciences, 23(1), 295. https://doi.org/10.3390/ijms23010295
Prasad, R. B., & Groop, L. (2015). Genetics of Type 2 Diabetes—Pitfalls and Possibilities. Genes, 6(1), 87–123. https://doi.org/10.3390/genes6010087
Qiu, S., Cai, Y., Ye, H., Lin, C., Xie, Y., Tang, S., & Zhang, A. (2023). Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduction and Targeted Therapy, 8(1). https://doi.org/10.1038/s41392-023-01399-3
Rabby, M. G., Rahman, M. H., Islam, M. N., Kamal, M. M., Biswas, M., Bonny, M., & Hasan, M. M. (2023). In silico identification and functional prediction of differentially expressed genes in South Asian populations associated with type 2 diabetes. PLOS ONE, 18(12), e0294399. https://doi.org/10.1371/journal.pone.0294399
Siegl, F., Večeřa, M., Roskova, I., Smrčka, M., Jancalek, R., Kazda, T., Slabý, O., & Šáňa, J. (2022). The significance of MicroRNAs in the molecular pathology of brain metastases. Cancers, 14(14), 3386. https://doi.org/10.3390/cancers14143386
Tabackman, L. (2023, April 7). Is type 2 diabetes genetic? Healthline. https://www.healthline.com/health/type-2-diabetes/genetics#responsible-genes
Tam, Z. Y., Ng, S. P., Tan, L., Lin, C., Rothenbacher, D., Klenk, J., & Boehm, B. O. (2017). Metabolite profiling in identifying metabolic biomarkers in older people with late-onset type 2 diabetes mellitus. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-01735-y
Villa Solís, L. F., Lascano Sánchez , A. del R., Ortiz Martinez, C. A., Viteri López, A. M., & Curichumbi Guama, M. R. (2023). Nursing intervention in the care of patients with diabetes mellitus. Sapienza: International Journal of Interdisciplinary Studies, 4(4), e23061. https://doi.org/10.51798/sijis.v4i4.718
World Health Organization: WHO & World Health Organization: WHO. (2023, April 5). Diabetes. https://www.who.int/news-room/fact-sheets/detail/diabetes
Yahaya, T., Salisu, T., Abdulrahman, Y., & Umar, A. (2020). Update on the genetic and epigenetic etiology of gestational diabetes mellitus: a review. Egyptian Journal of Medical Human Genetics, 21(1). https://doi.org/10.1186/s43042-020-00054-8
Tao, W., Lin, P., Liu, S., Xie, Q., Ke, S., & Zeng, X. (2017). 1-Butyl-3-Methylimidazolium tetrafluoroborate film as a highly selective sensing material for Non-Invasive detection of acetone using a quartz crystal microbalance. Sensors, 17(12), 194. https://doi.org/10.3390/s17010194
Rodríguez-Torres, M., Altúzar, V., Mendoza‐Barrera, C., Beltrán-Pérez, G., Castillo-Mixcóatl, J., & Muñoz-Aguirre, S. (2023). Acetone detection and classification as biomarker of diabetes mellitus using a quartz crystal microbalance gas sensor array. Sensors, 23(24), 9823. https://doi.org/10.3390/s23249823
Wang, W., Zhou, W., Wang, S., Huang, J., Le, Y., Nie, S., Wang, W., & Guo, Q. (2021). Accuracy of breath test for diabetes mellitus diagnosis: a systematic review and meta-analysis. BMJ open diabetes research & care, 9(1), e002174. https://doi.org/10.1136/bmjdrc-2021-002174
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jefferson Vicente Urvina Muñoz, Erika Alejandra Zúñiga San Lucas, Ney Asdrubal Macias Valdez, Jean Pierre Villafuerte, Cristhian Andrés Arroba Riofrio
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.