Advances in AI-based combination therapies versus standard treatments for heart failure in patients with advanced kidney injury

Authors

DOI:

https://doi.org/10.51798/sijis.v5i3.789

Keywords:

AI-based therapies, machine learning, predictive analytics, acute kidney injury, heart failure management, advanced kidney disease

Abstract

Background: Recent advancements in AI and Machine Learning (ML) can help manage kidney disease and heart failure by providing predictive analytics and personalized treatment plans, improving diagnostic accuracy, and assisting clinicians in controlling chronic disease symptoms like acute kidney injury (AKI) and Managing Heart Failure (HF). We evaluated AI and ML role in predicting AKI and managing HF patients and it involved analyzing various predictive models and technologies to improve early detection provide personalized treatment, and enhance overall patient outcomes in complex renal and cardiac conditions. Methodology: We conducted our search on databases Scopus, PubMed, and Web of Science. Empirical evidence and state of the art of cutting-edge literature and real-time field research was analyzed. Results: AI advancements in HF management for advanced kidney disease AKI include unsupervised machine learning for risk stratification, reinforcement learning for predictive modeling and dynamic management, and LLMs and chatbots for diagnostic support and patient education. New developments in AI and medical technology are predictive analytics for AKI, automated ultrasound interpretation, AI-enhanced dialysis monitoring, HF risk prediction, remote monitoring, and telehealth integration, and making personal treatment strategies according to patient needs. Innovations like wearable dialysis devices, bioengineered kidney tissues, ECMO, LVADs, TAVR, SGLT2 inhibitors, CRT, and nephroprotective drugs have also improved patient outcomes as these have enabled personalized care and early intervention strategies. Conclusion: It is possible to conclude that AI has revolutionized AKI and HF management. Novel technologies offer precise and adaptive care that strictly addresses individual patient needs.

Author Biographies

Stefannie Michelle Rea Chela, Ministerio de Salud, Ecuador

MD Researcher - Ministerio de Salud, Ecuador

Segundo Fernando Morales Quilligana, Universidad Técnica de Ambato, Ecuador

Lecturer, Universidad Técnica de Ambato, Ecuador

Jeison Andres Morales Olivera, Keralty Clinical Center Ibague, Colombia

MD Researcher, Keralty Clinical Center Ibague, Colombia.

Renato Castaño Alarcón, Hospital Universitario Hernando Moncaleano Perdomo, Colombia

MD Researcher, Hospital Universitario Hernando Moncaleano Perdomo, Colombia

Víctor Daniel Cruz Celi, Universidad de Guayaquil, Ecuador

MD, Universidad de Guayaquil - Ecuador

References

Abedi, M., Alshybani, I., Shahadat, M., & Murillo, M. S. (2023). Beyond traditional teaching: The potential of large language models and chatbots in graduate engineering. ResearchGate. https://doi.org/10.48550/arXiv.2309.13059

Bacci, M. R., Minczuk, C. V. B., & Fonseca, F. L. A. (2023). A systematic review of artificial intelligence algorithms for predicting acute kidney injury. European Review for Medical and Pharmacological Sciences, 27(20), 9872–9879. https://doi.org/10.26355/eurrev_202310_34164

Bajaj, T., & Koyner, J. L. (2022). Artificial intelligence in acute kidney injury prediction. Advances in Chronic Kidney Disease, 29(5), 450–460. https://doi.org/10.1053/j.ackd.2022.07.009

Breidthardt, T., et al. (2011). Effect and clinical prediction of worsening renal function in acute decompensated heart failure. American Journal of Cardiology, 107, 730–735. https://doi.org/10.1016/j.amjcard.2010.10.056

Chahal, R. S., Chukwu, C. A., Kalra, P. R., & Kalra, P. A. (2020). Heart failure and acute renal dysfunction in the cardiorenal syndrome. Clinical Medicine, 20(2), 146–150. https://doi.org/10.7861/clinmed.2019-0422

Cheungpasitporn, W., Thongprayoon, C., & Kashani, K. B. (2024). Artificial intelligence in heart failure and acute kidney injury: Emerging concepts and controversial dimensions. Cardiorenal Medicine. https://doi.org/10.1159/000537751

Cheungpasitporn, W., Thongprayoon, C., & Kashani, K. B. (2024). Artificial intelligence and machine learning’s role in sepsis-associated acute kidney injury. Kidney Research and Clinical Practice. https://doi.org/10.23876/j.krcp.23.298

Doshi, R., Dhawan, T., Rendon, C., Rodriguez, M. A., Al-Khafaji, J. F., Taha, M., et al. (2020). Incidence and implications of acute kidney injury in patients hospitalized with acute decompensated heart failure. Internal and Emergency Medicine, 15(3), 421–428. https://doi.org/10.1007/s11739-019-02239-4

Elahi, M., Afolaranmi, S. O., Lastra, J. L. M., & Garcia, J. a. P. (2023). A comprehensive literature review of the applications of AI techniques through the lifecycle of industrial equipment. Discover Artificial Intelligence, 3(1). https://doi.org/10.1007/s44163-023-00089-x

Fragasso, T., Raggi, V., Passaro, D., Tardella, L., Lasinio, G. J., & Ricci, Z. (2023). Predicting acute kidney injury with an artificial intelligence-driven model in a pediatric cardiac intensive care unit. Journal of Anesthesia, Analgesia, and Critical Care, 3(1). https://doi.org/10.1186/s44158-023-00125-3

Gameiro, J., Branco, T., & Lopes, J. A. (2020). Artificial intelligence in acute kidney injury risk prediction. Journal of Clinical Medicine, 9(3), 678. https://doi.org/10.3390/jcm9030678

Holgado, J. L., Lopez, C., Fernandez, A., Sauri, I., Uso, R., Trillo, J. L., et al. (2020). Acute kidney injury in heart failure: A population study. ESC Heart Failure, 7(2), 415–422. https://doi.org/10.1002/ehf2.12614

Hong, C., Sun, Z., Hao, Y., Dong, Z., Gu, Z., & Huang, Z. (2022). Identifying patients with heart failure who are susceptible to de novo acute kidney injury: Machine learning approach. JMIR Medical Informatics, 10(10), e37484. https://doi.org/10.2196/37484

Hong, T., Wang, Z., Luo, X., & Zhang, W. (2020). State-of-the-art on research and applications of machine learning in the building life cycle. Energy and Buildings, 212, 109831. https://doi.org/10.1016/j.enbuild.2020.109831

Lassus, J., Harjola, V. P., Sund, R., Siirilä-Waris, K., Melin, J., Peuhkurinen, K., Pulkki, K., Nieminen, M. S., & FINN-AKVA Study group (2007). Prognostic value of cystatin C in acute heart failure in relation to other markers of renal function and NT-proBNP. European heart journal, 28(15), 1841–1847. https://doi.org/10.1093/eurheartj/ehl507

Lee, T. H., Fan, P. C., Chen, J. J., Wu, V. C. C., Lee, C. C., Yen, C. L., ... & Chang, C. H. (2020). A validation study comparing existing prediction models of acute kidney injury in patients with acute heart failure: A multi-institution database study in Taiwan. https://doi.org/10.21203/rs.3.rs-97827/v1

Li, Z., Liu, X., Tang, Z., Jin, N., Zhang, P., Eadon, M. T., ... & Su, J. (2024). TrajVis: a visual clinical decision support system to translate artificial intelligence trajectory models in the precision management of chronic kidney disease. Journal of the American Medical Informatics Association, ocae158. https://doi.org/10.1093/jamia/ocae158

Lidgard, B., & Bansal, N. (2024). Managing heart failure in chronic kidney disease: A review of current literature. Current Treatment Options in Cardiovascular Medicine, 1-10. https://doi.org/10.1007/s11936-024-01048-0

Narayana Health. (2024, July 12). CRRT: When it’s needed and how it works. Narayana Health. https://www.narayanahealth.org/blog/understanding-continuous-renal-replacement-therapy-when-its-needed-and-how-it-works

Rewa, O. G., Ortiz-Soriano, V., Lambert, J., Kabir, S., Heung, M., House, A. A., ... & Neyra, J. A. (2023). Epidemiology and outcomes of AKI treated with continuous kidney replacement therapy: The Multicenter CRRTNET study. Kidney Medicine, 5(6), 100641. https://doi.org/10.1016/j.xkme.2023.100641

Samoni, S., Husain-Syed, F., Villa, G., & Ronco, C. (2021). Continuous renal replacement therapy in the critically ill patient: From garage technology to artificial intelligence. Journal of Clinical Medicine, 11(1), 172. https://doi.org/10.3390/jcm11010172

Saunders, H., Rehan, A., Hashmi, M. F., & Sanghavi, D. K. (2024, March 10). Continuous renal replacement therapy. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK556028/

Selewski, D. T., & Wille, K. M. (2021). Continuous renal replacement therapy in patients treated with extracorporeal membrane oxygenation. Seminars in Dialysis, 34(6), 537–549. https://doi.org/10.1111/sdi.12965

Skalidis, I., Cagnina, A., Luangphiphat, W., Mahendiran, T., Muller, O., Abbe, E., & Fournier, S. (2023). ChatGPT takes on the European Exam in Core Cardiology: An artificial intelligence success story? European Heart Journal - Digital Health, 4(3), 279–281. https://doi.org/10.1093/ehjdh/ztad017

Stehlé, T., & Delanaye, P. (2024). Which is the best glomerular filtration marker: Creatinine, cystatin C or both? European Journal of Clinical Investigation, e14278. https://doi.org/10.1111/eci.14278

Tran, N. K., Sen, S., Palmieri, T. L., Lima, K., Falwell, S., Wajda, J., & Rashidi, H. H. (2019). Artificial intelligence and machine learning for predicting acute kidney injury in severely burned patients: A proof of concept. Burns, 45(6), 1350–1358. https://doi.org/10.1016/j.burns.2019.03.021

Verdiani, V., Lastrucci, V., & Nozzoli, C. (2010). Worsening renal function in patients hospitalized with acute heart failure: Risk factors and prognostic significances. International Journal of Nephrology, 2011, 785974. https://doi.org/10.4061/2011/785974

Wang, L., & Zhao, Y. T. (2021). Development and validation of a prediction model for acute kidney injury among patients with acute decompensated heart failure. Frontiers in Cardiovascular Medicine, 8, 719307. https://doi.org/10.3389/fcvm.2021.719307

Wang, Y. N., Cheng, H., Yue, T., & Chen, Y. P. (2013). Derivation and validation of a prediction score for acute kidney injury in patients hospitalized with acute heart failure in a Chinese cohort. Nephrology (Carlton), 18(6), 489–496. https://doi.org/10.1111/nep.12092

World Health Organization. (2021, June 11). Cardiovascular diseases (CVDs). World Health Organization. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)?gad_source=1&gclid=Cj0KCQjwzby1BhCQARIsAJ_0t5OpHcNc8q6jb-7E7JYK8RH1i6cjeuv3s2GmiwWQlYUYzaOzvE5cUXkaAkdJEALw_wcB

Xanthopoulos, A., Papamichail, A., Briasoulis, A., Loritis, K., Bourazana, A., Magouliotis, D. E., ... & Triposkiadis, F. (2023). Heart failure in patients with chronic kidney disease. Journal of Clinical Medicine, 12(18), 6105. https://doi.org/10.3390/jcm12186105

Zahir Anjum, D., Bonde, A. N., Fosbol, E., Hartwell Garred, C., Gislason, G., Elmegaard, M., ... & Schou, M. (2024). Incidence of clinical outcomes in heart failure patients with and without advanced chronic kidney disease. ESC Heart Failure. https://doi.org/10.1002/ehf2.14933

Zhou, L. Z., Yang, X. B., Guan, Y., Xu, X., Tan, M. T., Hou, F. F., & Chen, P. Y. (2016). Development and Validation of a Risk Score for Prediction of Acute Kidney Injury in Patients With Acute Decompensated Heart Failure: A Prospective Cohort Study in China. Journal of the American Heart Association, 5(11), e004035. https://doi.org/10.1161/JAHA.116.004035

Downloads

Published

2024-09-30

How to Cite

Rea Chela, S. M., Morales Quilligana, S. F., Morales Olivera, J. A., Castaño Alarcón, . R., & Cruz Celi, V. D. (2024). Advances in AI-based combination therapies versus standard treatments for heart failure in patients with advanced kidney injury. Sapienza: International Journal of Interdisciplinary Studies, 5(3), e24062. https://doi.org/10.51798/sijis.v5i3.789

Issue

Section

Health Sciences - Original Articles