Innovative imaging techniques for early glioma detection and characterization: a systematic review and meta-analysis
DOI:
https://doi.org/10.51798/sijis.v5i4.867Keywords:
Gliomas, Diffusion Tensor Imaging (DTI), Positron Emission Tomography (PET), Apparent Diffusion Coefficient (ADC), Magnetic Resonance Imaging (MRI), Tumor CharacterizationAbstract
Background: Gliomas, primary intra-axial brain tumors originating from neuroglial cells, pose diagnostic challenges despite advancements in imaging techniques. This systematic review and meta-analysis aimed to evaluate recent innovations in imaging modalities for glioma detection and characterization. Methodology: A comprehensive search of PubMed and Cochrane Library identified studies from 2015 to December 2023. Inclusion criteria encompassed studies on imaging techniques for gliomas, published in peer-reviewed journals. Quality was assessed using the Newcastle-Ottawa Scale. Results: Fifteen studies on glioma grades and imaging techniques were reviewed. Diffusion Tensor Imaging (DTI) was practical for glioma characterization, with Apparent Diffusion (AD) maps accurately detecting malignant transformation and differentiating tumor grades. 18F-Fluorodeoxyglucose Positron Emission Tomography (18F-FDG PET) enhanced glioma identification, particularly when combined with MRI, improving specificity for high-grade tumors. Advanced MRI techniques, such as MR Perfusion Imaging, and Dynamic 18F-FET PET were useful for distinguishing glioma grades and evaluating tumor biology. Amide Proton Transfer Imaging, in conjunction with FDG-PET, also enhanced diagnostic precision. The meta-analysis showed a combined effect size of 0.8622 (95% CI [0.6401; 1.0843]) for ADC in gliomas, indicating a high diagnostic value. Conclusion: Recent advancements in DTI and PET significantly improve glioma detection and characterization, highlighting the need for integrated imaging for accuracy.
References
Abd-Elghany, A. A., Naji, A. A., Alonazi, B., Aldosary, H., Alsufayan, M. A., Alnasser, M., Mohammad, E. A., & Mahmoud, M. Z. (2019). Radiological characteristics of glioblastoma multiforme using CT and MRI examination. Journal of Radiation Research and Applied Sciences, 12(1), 289–293. https://doi.org/10.1080/16878507.2019.1655864
Aprile, I., Giovannelli, G., Fiaschini, P., Muti, M., Kouleridou, A., & Caputo, N. (2015). High- and low-grade glioma differentiation: the role of percentage signal recovery evaluation in MR dynamic susceptibility contrast imaging. Radiologia Medica, 120(10), 967–974. https://doi.org/10.1007/S11547-015-0511-7/METRICS
Bashir, A., Brennum, J., Broholm, H., & Law, I. (2018). The diagnostic accuracy of detecting malignant transformation of low-grade glioma using O-(2-[18F]fluoroethyl)-l-tyrosine positron emission tomography: a retrospective study. Journal of Neurosurgery, 130(2), 451–464. https://doi.org/10.3171/2017.8.JNS171577
Chiavazza, C., Pellerino, A., Ferrio, F., Cistaro, A., Soffietti, R., & Rudà, R. (2018). Primary CNS Lymphomas: Challenges in Diagnosis and Monitoring. BioMed Research International, 2018. https://doi.org/10.1155/2018/3606970
Chung, C., Metser, U., & Ménard, C. (2015). Advances in Magnetic Resonance Imaging and Positron Emission Tomography Imaging for Grading and Molecular Characterization of Glioma. Seminars in Radiation Oncology, 25(3), 164–171. https://doi.org/10.1016/J.SEMRADONC.2015.02.002
Drake, L. R., Hillmer, A. T., & Cai, Z. (2020). Approaches to PET imaging of glioblastoma. Molecules, 25(3). https://doi.org/10.3390/MOLECULES25030568
Ellingson, B. M., Chung, C., Pope, W. B., Boxerman, J. L., & Kaufmann, T. J. (2017). Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. Journal of Neuro-Oncology, 134(3), 495–504. https://doi.org/10.1007/S11060-017-2375-2
Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2019). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer, 144(8), 1941–1953. https://doi.org/10.1002/IJC.31937
Freitag, M. T., Maier-Hein, K. H., Binczyk, F., Laun, F. B., Weber, C., Bonekamp, D., Tarnawski, R., Bobek-Billewicz, B., Polanska, J., Majchrzak, H., & Stieltjes, B. (2016). Early Detection of Malignant Transformation in Resected WHO II Low-Grade Glioma Using Diffusion Tensor-Derived Quantitative Measures. PLOS ONE, 11(10), e0164679. https://doi.org/10.1371/JOURNAL.PONE.0164679
Gupta, A., & Dwivedi, T. (2017). A simplified overview of World Health Organization classification update of central nervous system tumors 2016. Journal of Neurosciences in Rural Practice, 8(4), 629–641. https://doi.org/10.4103/JNRP.JNRP_168_17
Jin, Y., Huang, C., Daianu, M., Zhan, L., Dennis, E. L., Reid, R. I., Jack, C. R., Zhu, H., & Thompson, P. M. (2017). 3D tract-specific local and global analysis of white matter integrity in Alzheimer’s disease. Human Brain Mapping, 38(3), 1191–1207. https://doi.org/10.1002/HBM.23448
Jin, Y., Randall, J. W., Elhalawani, H., Al Feghali, K. A., Elliott, A. M., Anderson, B. M., Lacerda, L., Tran, B. L., Mohamed, A. S., Brock, K. K., Fuller, C. D., & Chung, C. (2020). Detection of Glioblastoma Subclinical Recurrence Using Serial Diffusion Tensor Imaging. Cancers 2020, Vol. 12, Page 568, 12(3), 568. https://doi.org/10.3390/CANCERS12030568
Law, I., Albert, N. L., Arbizu, J., Boellaard, R., Drzezga, A., Galldiks, N., la Fougère, C., Langen, K. J., Lopci, E., Lowe, V., McConathy, J., Quick, H. H., Sattler, B., Schuster, D. M., Tonn, J. C., & Weller, M. (2019). Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [ 18 F]FDG: version 1.0. European Journal of Nuclear Medicine and Molecular Imaging, 46(3), 540–557. https://doi.org/10.1007/S00259-018-4207-9
Lo, C. K. L., Mertz, D., & Loeb, M. (2014). Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments. BMC medical research methodology, 14, 1-5. https://doi.org/10.1186/1471-2288-14-45
Mellai, M., Piazzi, A., Casalone, C., Grifoni, S., Melcarne, A., Annovazzi, L., Cassoni, P., Denysenko, T., Valentini, M. C., Cistaro, A., & Schiffer, D. (2015). Astroblastoma: Beside being a tumor entity, an occasional phenotype of astrocytic gliomas? OncoTargets and Therapy, 8, 451–460. https://doi.org/10.2147/OTT.S71384
Nakajima, S., Okada, T., Yamamoto, A., Kanagaki, M., Fushimi, Y., Okada, T., Arakawa, Y., Takagi, Y., Miyamoto, S., & Togashi, K. (2015). Primary central nervous system lymphoma and glioblastoma: differentiation using dynamic susceptibility-contrast perfusion-weighted imaging, diffusion-weighted imaging, and 18F-fluorodeoxyglucose positron emission tomography. Clinical Imaging, 39(3), 390–395. https://doi.org/10.1016/J.CLINIMAG.2014.12.002
Park, M. J., Kim, Y. K., Choi, S. Y., Rhim, H., Lee, W. J., & Choi, D. (2014). Preoperative Detection of Small Pancreatic Carcinoma: Value of Adding Diffusion-weighted Imaging to Conventional MR Imaging for Improving Confidence Level. Https://Doi.Org/10.1148/Radiol.14132563, 273(2), 433–443. https://doi.org/10.1148/RADIOL.14132563
Quartuccio, N., & Asselin, M.-C. (2017). The Validation Path of Hypoxia PET Imaging: Focus on Brain Tumours. Current Medicinal Chemistry, 25(26), 3074–3095. https://doi.org/10.2174/0929867324666171116123702
Quartuccio, N., Laudicella, R., Mapelli, P., Guglielmo, P., Pizzuto, D. A., Boero, M., Arnone, G., & Picchio, M. (2020). Hypoxia PET imaging beyond 18F-FMISO in patients with high-grade glioma: 18F-FAZA and other hypoxia radiotracers. Clinical and Translational Imaging, 8(1), 11–20. https://doi.org/10.1007/S40336-020-00358-0
Quartuccio, N., Laudicella, R., Vento, A., Pignata, S., Mattoli, M. V., Filice, R., Comis, A. D., Arnone, A., Baldari, S., Cabria, M., & Cistaro, A. (2020). The Additional Value of 18F-FDG PET and MRI in Patients with Glioma: A Review of the Literature from 2015 to 2020. Diagnostics 2020, Vol. 10, Page 357, 10(6), 357. https://doi.org/10.3390/DIAGNOSTICS10060357
Roelcke, U., Wyss, M. T., Nowosielski, M., Rudà, R., Roth, P., Hofer, S., Galldiks, N., Crippa, F., Weller, M., & Soffietti, R. (2016). Amino acid positron emission tomography to monitor chemotherapy response and predict seizure control and progression-free survival in WHO grade II gliomas. Neuro-Oncology, 18(5), 744–751. https://doi.org/10.1093/NEUONC/NOV282
Sakata, A., Okada, T., Yamamoto, Y., Fushimi, Y., Dodo, T., Arakawa, Y., Mineharu, Y., Schmitt, B., Miyamoto, S., & Togashi, K. (2018). Addition of Amide Proton Transfer Imaging to FDG-PET/CT Improves Diagnostic Accuracy in Glioma Grading: A Preliminary Study Using the Continuous Net Reclassification Analysis. American Journal of Neuroradiology, 39(2), 265–272. https://doi.org/10.3174/AJNR.A5503
Shaffer, A., Kwok, S. S., Naik, A., Anderson, A. T., Lam, F., Wszalek, T., Arnold, P. M., & Hassaneen, W. (2022). Ultra-High-Field MRI in the Diagnosis and Management of Gliomas: A Systematic Review. Frontiers in Neurology, 13, 857825. https://doi.org/10.3389/FNEUR.2022.857825/BIBTEX
Shan, W., & Wang, X. L. (2017). Clinical application value of 3.0 T MR diffusion tensor imaging in grade diagnosis of gliomas. Oncology letters, 14(2), 2009-2014.
Shaw, T. B., Jeffree, R. L., Thomas, P., Goodman, S., Debowski, M., Lwin, Z., & Chua, B. (2019). Diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography in the evaluation of glioma. Journal of Medical Imaging and Radiation Oncology, 63(5), 650–656. https://doi.org/10.1111/1754-9485.12929
Shukla, G., Alexander, G. S., Bakas, S., Nikam, R., Talekar, K., Palmer, J. D., & Shi, W. (2017). Advanced magnetic resonance imaging in glioblastoma: A review. Chinese Clinical Oncology, 6(4). https://doi.org/10.21037/CCO.2017.06.28
Song, P. J., Lu, Q. Y., Li, M. Y., Li, X., & Shen, F. (2016). Comparison of effects of 18F-FDG PET-CT and MRI in identifying and grading gliomas. Journal of Biological Regulators and Homeostatic Agents, 30(3), 833–838. https://europepmc.org/article/med/27655507
Takano, K., Kinoshita, M., Arita, H., Okita, Y., Chiba, Y., Kagawa, N., Fujimoto, Y., Kishima, H., Kanemura, Y., Nonaka, M., Nakajima, S., Shimosegawa, E., Hatazawa, J., Hashimoto, N., & Yoshimine, T. (2016). Diagnostic and prognostic value of 11C-methionine PET for nonenhancing gliomas. American Journal of Neuroradiology, 37(1), 44–50. https://doi.org/10.3174/AJNR.A4460
Thust, S. C., Heiland, S., Falini, A., Jäger, H. R., Waldman, A. D., Sundgren, P. C., Godi, C., Katsaros, V. K., Ramos, A., Bargallo, N., Vernooij, M. W., Yousry, T., Bendszus, M., & Smits, M. (2018). Glioma imaging in Europe: A survey of 220 centres and recommendations for best clinical practice. European Radiology, 28(8), 3306–3317. https://doi.org/10.1007/S00330-018-5314-5
Valentini, M. C., Mellai, M., Annovazzi, L., Melcarne, A., Denysenko, T., Cassoni, P., Casalone, C., Maurella, C., Grifoni, S., Fania, P., Cistaro, A., & Schiffer, D. (2017). Comparison among conventional and advanced MRI, 18F-FDG PET/CT, phenotype and genotype in glioblastoma. Oncotarget, 8(53), 91636. https://doi.org/10.18632/ONCOTARGET.21482
Verger, A., & Langen, K.-J. (2017). PET Imaging in Glioblastoma: Use in Clinical Practice. Glioblastoma, 155–174. https://doi.org/10.15586/CODON.GLIOBLASTOMA.2017.CH9
Verger, A., Stoffels, G., Bauer, E. K., Lohmann, P., Blau, T., Fink, G. R., Neumaier, B., Shah, N. J., Langen, K. J., & Galldiks, N. (2018). Static and dynamic 18F–FET PET for the characterization of gliomas defined by IDH and 1p/19q status. European Journal of Nuclear Medicine and Molecular Imaging, 45(3), 443–451. https://doi.org/10.1007/S00259-017-3846-6/METRICS
Vomacka, L., Unterrainer, M., Holzgreve, A., Mille, E., Gosewisch, A., Brosch, J., Ziegler, S., Suchorska, B., Kreth, F. W., Tonn, J. C., Bartenstein, P., Albert, N. L., & Böning, G. (2018). Voxel-wise analysis of dynamic 18F-FET PET: a novel approach for non-invasive glioma characterisation. EJNMMI Research, 8(1), 1–13. https://doi.org/10.1186/S13550-018-0444-Y/FIGURES/5
Yamashita, K., Hiwatashi, A., Togao, O., Kikuchi, K., Kitamura, Y., Mizoguchi, M., Yoshimoto, K., Kuga, D., Suzuki, S. O., Baba, S., Isoda, T., Iwaki, T., Iihara, K., & Honda, H. (2016). Diagnostic utility of intravoxel incoherent motion mr imaging in differentiating primary central nervous system lymphoma from glioblastoma multiforme. Journal of Magnetic Resonance Imaging : JMRI, 44(5), 1256–1261. https://doi.org/10.1002/JMRI.25261
Yang, Y., He, M. Z., Li, T., & Yang, X. (2019). MRI combined with PET-CT of different tracers to improve the accuracy of glioma diagnosis: a systematic review and meta-analysis. Neurosurgical Review, 42(2), 185–195. https://doi.org/10.1007/S10143-017-0906-0/TABLES/3
Zikou, A., Sioka, C., Alexiou, G. A., Fotopoulos, A., Voulgaris, S., & Argyropoulou, M. I. (2018). Radiation necrosis, pseudoprogression, pseudoresponse, and tumor recurrence: Imaging challenges for the evaluation of treated gliomas. Contrast Media and Molecular Imaging, 2018. https://doi.org/10.1155/2018/6828396
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Pedro Miguel Hernández Valdelamar, Josue Leandro Teran Herrera, Jennifer Paola Peñafiel Castro, Cristina Anabell Torres Guerra, María Joaquina Vargas Ladinez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.