Optimizing sales processes with artificial intelligence and machine learning: a scientometric analysis

Authors

DOI:

https://doi.org/10.51798/sijis.v5i4.870

Keywords:

bibliometric analysis; sales automation; machine learning; artificial intelligence; sales process

Abstract

This study explores the literature that evaluates how artificial intelligence (AI) and machine learning (ML) can affect the optimization of sales processes, using a scientometric and bibliometric approach. Through keyword co-occurrence analysis in the scientific literature, the main trends and patterns in AI and ML research applied to sales were identified. VOSviewer software was used to map the relationships between key terms and visualize the predominant focus areas in the field. The results reveal that the adoption of AI and ML technologies is highly correlated with improvements in the efficiency of sales processes, highlighting the growing importance of these technologies in the development of business strategies. However, limited participation of researchers from developing countries was observed in this cutting-edge field, underscoring the need for greater inclusion and international collaboration. This study provides a comprehensive view of the current state of AI and ML research in sales, identifying both the advances made and the gaps in the literature that require further attention. The findings provide a solid basis for future research seeking to delve into the practical applications of these technologies in different industrial and geographical contexts, as well as for the development of policies that promote a more equitable distribution of knowledge and resources in this emerging area.

Author Biographies

Alison Nathaniel Ramirez-Soto, Universidad César Vallejo, Peru

Doctoral Candidate in Administration. Master in Business Administration and Management. Bachelor in Business Administration. With more than 10 years of experience in the administration of private companies.

José Elías Sandoval Ríos, Universidad César Vallejo, Peru

Doctor in Administration; Economist; Bachelor in Education. Master in Educational Sciences; Master in University Teaching and Research; with over 30 years of experience.

Italo Paul Yaranga Vite, Universidad César Vallejo, Peru

Doctoral candidate in Administration. Master in Systems Engineering and Information Technology. Collegiate Systems Engineer. With more than 15 years of experience in university teaching.

Pedro Efigenio Reyes Castaneda, Universidad César Vallejo, Peru

Doctoral candidate in administration. Master in Education Administration. Administrator Collegiate. With more than 22 years of experience in university teaching.

References

Agarwal, A., Durairajanayagam, D., Tatagari, S., Esteves, S. C., Harlev, A., Henkel, R., ... & Bashiri, A. (2016). Bibliometrics: tracking research impact by selecting the appropriate metrics. Asian journal of andrology, 18(2), 296-309. https://doi.org/10.4103/1008-682X.171582

Ali, A., Abd Razak, S., Othman, S. H., Eisa, T. A. E., Al-Dhaqm, A., Nasser, M., ... & Saif, A. (2022). Financial fraud detection based on machine learning: a systematic literature review. Applied Sciences, 12(19), 9637. https://doi.org/10.3390/app12199637

AlRyalat, S. A. S., Malkawi, L. W., & Momani, S. M. (2019). Comparing bibliometric analysis using PubMed, Scopus, and Web of Science databases. JoVE (Journal of Visualized Experiments), (152), e58494. https://doi.org/10.3791/58494

Auffarth, B. (2020). Artificial Intelligence with Python Cookbook: Proven recipes for applying AI algorithms and deep learning techniques using TensorFlow 2. x and PyTorch 1.6. Packt Publishing Ltd.

Bejou, D., Wray, B., & Ingram, T. N. (1996). Determinants of relationship quality: an artificial neural network analysis. Journal of business research, 36(2), 137-143. https://doi.org/10.1016/0148-2963(95)00100-X

Butt, N. S., Malik, A. A., & Shahbaz, M. Q. (2021). Bibliometric analysis of statistics journals indexed in web of science under emerging source citation index. Sage Open, 11(1), 2158244020988870. https://doi.org/10.1177/2158244020988870

Chang, P. C., & Wang, Y. W. (2006). Fuzzy Delphi and back-propagation model for sales forecasting in PCB industry. Expert systems with applications, 30(4), 715-726. https://doi.org/10.1016/j.eswa.2005.07.031

Chen, Z., Narayanan, N., Fang, B., Li, G., Pattabiraman, K., & DeBardeleben, N. (2020). Tensorfi: A flexible fault injection framework for tensorflow applications. In 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE), 426-435). IEEE. https://doi.org/10.1109/ISSRE5003.2020.00047

Cui, R., Gallino, S., Moreno, A., & Zhang, D. J. (2018). The operational value of social media information. Production and operations management, 27(10), 1749-1769. https://doi.org/10.1111/poms.12707

Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R., Jacobson, J., ... & Wang, Y. (2021). Setting the future of digital and social media marketing research: Perspectives and research propositions. International journal of information management, 59, 102168. https://doi.org/10.1016/j.ijinfomgt.2020.102168

Eduardo Tasca, J., Ensslin, L., Rolim Ensslin, S., & Bernardete Martins Alves, M. (2010). An approach for selecting a theoretical framework for the evaluation of training programs. Journal of European industrial training, 34(7), 631-655. https://doi.org/10.1108/03090591011070761

Filgueiras, F. (2023). Designing artificial intelligence policy: comparing design spaces in Latin America. Latin American Policy, 14(1), 5-21. https://doi.org/10.1111/lamp.12282

Jiao, J., & Zhang, Y. (2005). Product portfolio identification based on association rule mining. Computer-Aided Design, 37(2), 149-172. https://doi.org/10.1016/j.cad.2004.05.006

Kühl, N., Schemmer, M., Goutier, M., & Satzger, G. (2022). Artificial intelligence and machine learning. Electronic Markets, 32(4), 2235-2244.

Kwok, L., & Yu, B. (2013). Spreading social media messages on Facebook: An analysis of restaurant business-to-consumer communications. Cornell Hospitality Quarterly, 54(1), 84-94. https://doi.org/10.1177/1938965512458360

Lacerda, R., Ensslin, L., & Ensslin, S. (2011). A performance measurement view of IT project management. International Journal of Productivity and Performance Management, 60(2), 132-151. https://doi.org/10.1108/17410401111101476

Loureiro, A. L., Miguéis, V. L., & Da Silva, L. F. (2018). Exploring the use of deep neural networks for sales forecasting in fashion retail. Decision Support Systems, 114, 81-93. https://doi.org/10.1016/j.dss.2018.08.010

Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 38(6), 937-947. https://doi.org/10.1287/mksc.2019.1192

Muro, E. D. A., Álvarez, L. A. S., Rodriguez, V. H. P., Lucana, F. R. V., Rojas, L. M. H., Benavides, A. M. V., & Salazar, C. A. H. (2024). Fostering Equity in Rural Education: a Literature Review on Student Dropout and Retention Strategies. Revista De Gestão Social E Ambiental, 18(1), e04922. https://doi.org/10.24857/rgsa.v18n1-083

Olano, M. D., de la Cruz, A. S. V., Rodriguez, V. H. P., Cruz, L. D. C. S. S., Benavides, A. M. V., Salazar, C. A. H., … Reategui, J. A. (2024). The Need for Innovation in Financial Education: A Study of Household Indebtedness in Peru. Revista De Gestão Social E Ambiental, 18(1), e04919. https://doi.org/10.24857/rgsa.v18n1-081

Pagani, R. N., Kovaleski, J. L., & Resende, L. M. (2015). Methodi Ordinatio: a proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication. Scientometrics, 105, 2109-2135. https://doi.org/10.1007/s11192-015-1744-x

Park, B., & Bae, J. K. (2015). Using machine learning algorithms for housing price prediction: The case of Fairfax County, Virginia housing data. Expert systems with applications, 42(6), 2928-2934. https://doi.org/10.1016/j.eswa.2014.11.040

Policarpo, L. M., da Silveira, D. E., da Rosa Righi, R., Stoffel, R. A., da Costa, C. A., Barbosa, J. L. V., ... & Arcot, T. (2021). Machine learning through the lens of e-commerce initiatives: An up-to-date systematic literature review. Computer Science Review, 41, 100414. https://doi.org/10.1016/j.cosrev.2021.100414

Pranckutė, R. (2021). Web of Science (WoS) and Scopus: The titans of bibliographic information in today's academic world. Publications, 9(1), 12. https://doi.org/10.3390/publications9010012

Puican Rodriguez, V. H., Suárez Santa Cruz, L. D. C., Salazar Asalde, A., Alcántara Suyón, A., & Camacho Delgado, F. M. (2024). The effect of taxes and tax refunds on the economic activity of the energy industry in Peru. International Journal of Energy Economics and Policy, 14(4), 36-47.

Rafiei, M. H., & Adeli, H. (2016). A novel machine learning model for estimation of sale prices of real estate units. Journal of Construction Engineering and Management, 142(2), 04015066. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001047

Ramirez-Soto, A. N., Ríos, J. E. S., Rodriguez, V. H. P., Vite, I. P. Y., & Castaneda, P. E. R. (2024). Models of Strategic Management in Smes in The Period of The Covid-19 Pandemic in Metropolitan Lima. Revista de Gestão Social e Ambiental, 18(1), e04936-e04936.

Rodriguez, V. H. P., Aguilar, H. E. V., Delgado, F. M. C., Santa Cruz, L. D. C. S., Benavides, A. M. V., Salazar, C. A. H., ... & Suyón, A. A. (2024). Challenges in the Relationship between Liquidity and Profitability: Perspectives from a Literature Review. Revista de Gestão Social e Ambiental, 18(1), e04923-e04923. https://doi.org/10.24857/rgsa.v18n1-084

Rufasto, A. M., Lucumí, N. P. R., & Rodríguez, V. H. P. (2024). SIRE: Catalyst for Improvements in Accounting and Tax Processes. Journal of Ecohumanism, 3(7), 928-937.

Rui, H., Liu, Y., & Whinston, A. (2013). Whose and what chatter matters? The effect of tweets on movie sales. Decision support systems, 55(4), 863-870. https://doi.org/10.1016/j.dss.2012.12.022

Santa Cruz, L. D. C. S., Rodriguez, V. H. P., López, D. I. F., & Olivera, J. J. I. (2024). Electricity Industry Strategies in Ecuador and Peru: Their Impacts on Energy Efficiency and Prices. International Journal of Energy Economics and Policy, 14(5), 464-478. https://doi.org/10.32479/ijeep.16713

Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). E-commerce recommendation applications. Data mining and knowledge discovery, 5, 115-153. https://doi.org/10.1023/A:1009804230409

Smith, K. A., & Gupta, J. N. (2000). Neural networks in business: techniques and applications for the operations researcher. Computers & Operations Research, 27(11-12), 1023-1044. https://doi.org/10.1016/S0305-0548(99)00141-0

Syam, N., & Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice. Industrial marketing management, 69, 135-146. https://doi.org/10.1016/j.indmarman.2017.12.019

Thomassey, S. (2010). Sales forecasts in clothing industry: The key success factor of the supply chain management. International Journal of Production Economics, 128(2), 470-483. https://doi.org/10.1016/j.ijpe.2010.07.018

. Production and operations management, 27(10), 1749-1769. https://doi.org/10.1111/poms.12707

Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R., Jacobson, J., ... & Wang, Y. (2021). Setting the future of digital and social media marketing research: Perspectives and research propositions. International journal of information management, 59, 102168. https://doi.org/10.1016/j.ijinfomgt.2020.102168

Eduardo Tasca, J., Ensslin, L., Rolim Ensslin, S., & Bernardete Martins Alves, M. (2010). An approach for selecting a theoretical framework for the evaluation of training programs. Journal of European industrial training, 34(7), 631-655. https://doi.org/10.1108/03090591011070761

Jiao, J., & Zhang, Y. (2005). Product portfolio identification based on association rule mining. Computer-Aided Design, 37(2), 149-172. https://doi.org/10.1016/j.cad.2004.05.006

Kwok, L., & Yu, B. (2013). Spreading social media messages on Facebook: An analysis of restaurant business-to-consumer communications. Cornell Hospitality Quarterly, 54(1), 84-94. https://doi.org/10.1177/1938965512458360

Kühl, N., Schemmer, M., Goutier, M., & Satzger, G. (2022). Artificial intelligence and machine learning. Electronic Markets, 32(4), 2235-2244.

Agarwal, A., Durairajanayagam, D., Tatagari, S., Esteves, S. C., Harlev, A., Henkel, R., ... & Bashiri, A. (2016). Bibliometrics: tracking research impact by selecting the appropriate metrics. Asian journal of andrology, 18(2), 296-309. https://doi.org/10.4103/1008-682X.171582

Ali, A., Abd Razak, S., Othman, S. H., Eisa, T. A. E., Al-Dhaqm, A., Nasser, M., ... & Saif, A. (2022). Financial fraud detection based on machine learning: a systematic literature review. Applied Sciences, 12(19), 9637. https://doi.org/10.3390/app12199637

AlRyalat, S. A. S., Malkawi, L. W., & Momani, S. M. (2019). Comparing bibliometric analysis using PubMed, Scopus, and Web of Science databases. JoVE (Journal of Visualized Experiments), (152), e58494. https://doi.org/10.3791/58494

Auffarth, B. (2020). Artificial Intelligence with Python Cookbook: Proven recipes for applying AI algorithms and deep learning techniques using TensorFlow 2. x and PyTorch 1.6. Packt Publishing Ltd.

Bejou, D., Wray, B., & Ingram, T. N. (1996). Determinants of relationship quality: an artificial neural network analysis. Journal of business research, 36(2), 137-143. https://doi.org/10.1016/0148-2963(95)00100-X

Butt, N. S., Malik, A. A., & Shahbaz, M. Q. (2021). Bibliometric analysis of statistics journals indexed in web of science under emerging source citation index. Sage Open, 11(1), 2158244020988870. https://doi.org/10.1177/2158244020988870

Chang, P. C., & Wang, Y. W. (2006). Fuzzy Delphi and back-propagation model for sales forecasting in PCB industry. Expert systems with applications, 30(4), 715-726. https://doi.org/10.1016/j.eswa.2005.07.031

Chen, Z., Narayanan, N., Fang, B., Li, G., Pattabiraman, K., & DeBardeleben, N. (2020). Tensorfi: A flexible fault injection framework for tensorflow applications. In 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE), 426-435). IEEE. https://doi.org/10.1109/ISSRE5003.2020.00047

Cui, R., Gallino, S., Moreno, A., & Zhang, D. J. (2018). The operational value of social media information. Production and operations management, 27(10), 1749-1769. https://doi.org/10.1111/poms.12707

Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R., Jacobson, J., ... & Wang, Y. (2021). Setting the future of digital and social media marketing research: Perspectives and research propositions. International journal of information management, 59, 102168. https://doi.org/10.1016/j.ijinfomgt.2020.102168

Eduardo Tasca, J., Ensslin, L., Rolim Ensslin, S., & Bernardete Martins Alves, M. (2010). An approach for selecting a theoretical framework for the evaluation of training programs. Journal of European industrial training, 34(7), 631-655. https://doi.org/10.1108/03090591011070761

Filgueiras, F. (2023). Designing artificial intelligence policy: comparing design spaces in Latin America. Latin American Policy, 14(1), 5-21. https://doi.org/10.1111/lamp.12282

Jiao, J., & Zhang, Y. (2005). Product portfolio identification based on association rule mining. Computer-Aided Design, 37(2), 149-172. https://doi.org/10.1016/j.cad.2004.05.006

Kühl, N., Schemmer, M., Goutier, M., & Satzger, G. (2022). Artificial intelligence and machine learning. Electronic Markets, 32(4), 2235-2244.

Kwok, L., & Yu, B. (2013). Spreading social media messages on Facebook: An analysis of restaurant business-to-consumer communications. Cornell Hospitality Quarterly, 54(1), 84-94. https://doi.org/10.1177/1938965512458360

Lacerda, R., Ensslin, L., & Ensslin, S. (2011). A performance measurement view of IT project management. International Journal of Productivity and Performance Management, 60(2), 132-151. https://doi.org/10.1108/17410401111101476

Loureiro, A. L., Miguéis, V. L., & Da Silva, L. F. (2018). Exploring the use of deep neural networks for sales forecasting in fashion retail. Decision Support Systems, 114, 81-93. https://doi.org/10.1016/j.dss.2018.08.010

Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 38(6), 937-947. https://doi.org/10.1287/mksc.2019.1192

Muro, E. D. A., Álvarez, L. A. S., Rodriguez, V. H. P., Lucana, F. R. V., Rojas, L. M. H., Benavides, A. M. V., & Salazar, C. A. H. (2024). Fostering Equity in Rural Education: a Literature Review on Student Dropout and Retention Strategies. Revista De Gestão Social E Ambiental, 18(1), e04922. https://doi.org/10.24857/rgsa.v18n1-083

Olano, M. D., de la Cruz, A. S. V., Rodriguez, V. H. P., Cruz, L. D. C. S. S., Benavides, A. M. V., Salazar, C. A. H., … Reategui, J. A. (2024). The Need for Innovation in Financial Education: A Study of Household Indebtedness in Peru. Revista De Gestão Social E Ambiental, 18(1), e04919. https://doi.org/10.24857/rgsa.v18n1-081

Pagani, R. N., Kovaleski, J. L., & Resende, L. M. (2015). Methodi Ordinatio: a proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication. Scientometrics, 105, 2109-2135. https://doi.org/10.1007/s11192-015-1744-x

Park, B., & Bae, J. K. (2015). Using machine learning algorithms for housing price prediction: The case of Fairfax County, Virginia housing data. Expert systems with applications, 42(6), 2928-2934. https://doi.org/10.1016/j.eswa.2014.11.040

Policarpo, L. M., da Silveira, D. E., da Rosa Righi, R., Stoffel, R. A., da Costa, C. A., Barbosa, J. L. V., ... & Arcot, T. (2021). Machine learning through the lens of e-commerce initiatives: An up-to-date systematic literature review. Computer Science Review, 41, 100414. https://doi.org/10.1016/j.cosrev.2021.100414

Pranckutė, R. (2021). Web of Science (WoS) and Scopus: The titans of bibliographic information in today's academic world. Publications, 9(1), 12. https://doi.org/10.3390/publications9010012

Puican Rodriguez, V. H., Suárez Santa Cruz, L. D. C., Salazar Asalde, A., Alcántara Suyón, A., & Camacho Delgado, F. M. (2024). The effect of taxes and tax refunds on the economic activity of the energy industry in Peru. International Journal of Energy Economics and Policy, 14(4), 36-47.

Rafiei, M. H., & Adeli, H. (2016). A novel machine learning model for estimation of sale prices of real estate units. Journal of Construction Engineering and Management, 142(2), 04015066. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001047

Ramirez-Soto, A. N., Ríos, J. E. S., Rodriguez, V. H. P., Vite, I. P. Y., & Castaneda, P. E. R. (2024). Models of Strategic Management in Smes in The Period of The Covid-19 Pandemic in Metropolitan Lima. Revista de Gestão Social e Ambiental, 18(1), e04936-e04936.

Rodriguez, V. H. P., Aguilar, H. E. V., Delgado, F. M. C., Santa Cruz, L. D. C. S., Benavides, A. M. V., Salazar, C. A. H., ... & Suyón, A. A. (2024). Challenges in the Relationship between Liquidity and Profitability: Perspectives from a Literature Review. Revista de Gestão Social e Ambiental, 18(1), e04923-e04923. https://doi.org/10.24857/rgsa.v18n1-084

Rufasto, A. M., Lucumí, N. P. R., & Rodríguez, V. H. P. (2024). SIRE: Catalyst for Improvements in Accounting and Tax Processes. Journal of Ecohumanism, 3(7), 928-937.

Rui, H., Liu, Y., & Whinston, A. (2013). Whose and what chatter matters? The effect of tweets on movie sales. Decision support systems, 55(4), 863-870. https://doi.org/10.1016/j.dss.2012.12.022

Santa Cruz, L. D. C. S., Rodriguez, V. H. P., López, D. I. F., & Olivera, J. J. I. (2024). Electricity Industry Strategies in Ecuador and Peru: Their Impacts on Energy Efficiency and Prices. International Journal of Energy Economics and Policy, 14(5), 464-478. https://doi.org/10.32479/ijeep.16713

Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). E-commerce recommendation applications. Data mining and knowledge discovery, 5, 115-153. https://doi.org/10.1023/A:1009804230409

Smith, K. A., & Gupta, J. N. (2000). Neural networks in business: techniques and applications for the operations researcher. Computers & Operations Research, 27(11-12), 1023-1044. https://doi.org/10.1016/S0305-0548(99)00141-0

Syam, N., & Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice. Industrial marketing management, 69, 135-146. https://doi.org/10.1016/j.indmarman.2017.12.019

Thomassey, S. (2010). Sales forecasts in clothing industry: The key success factor of the supply chain management. International Journal of Production Economics, 128(2), 470-483. https://doi.org/10.1016/j.ijpe.2010.07.018

Downloads

Published

2024-12-21

How to Cite

Ramirez-Soto, A. N., Sandoval Ríos, J. E., Yaranga Vite, I. P., & Reyes Castaneda, P. E. (2024). Optimizing sales processes with artificial intelligence and machine learning: a scientometric analysis. Sapienza: International Journal of Interdisciplinary Studies, 5(4), e24081. https://doi.org/10.51798/sijis.v5i4.870

Issue

Section

Economic & Social Sciences - Original Articles